The role of stress in ductile deformation

Rilud Weijermars

S 7422 Uppisala, Sweden

Abstract

Absiraci-'The 'oncepi al progerentive ducile delormation has previously been diseussed manly in kinemali rqualan denved here direaly links the anentalion ul the mapr axis al devialane tress la the streteh arid

The inclirialion of the major pnocipal devalonc aress axis wilh respect la a relerence plane contrals boilh ihe' partale movement paths and mode al progessive delormalon The delormalon tensor, obtaned hy inlegraling, Ihe rale al displacement or velocity gradent equalions, is hrst enpremsed in lime dependent lerms compnarip, determined by the rheology ol the delorming rocks and the magnilude ol the devialuric strens 'This derivation yolds a lime dependent deformation tensor which it expressed in lemms ol the dynamic viscosily and the delormaloin Ifnsor is illusiraled hy lorward modelling, using, computer graphics 'These allow ihe progeressive visualized

INTRODUCTION

Structural geologists have developed techniques to map, methods to display and jargon to describe, the geometry of deformalton patterns observed in rocks The structural leatures of particular terrains are some times used to reconstruct their killematic or tectonic history However, this traditonal, descrnptive approach of structural geology does not address lundamental questions concerning the dynamics of deformation. For example, "Never talk about stresses, all you see in rocks is a state of holte stran whoch may result from any deformation history', is a common statement repeat edly emphasized by the community ol structural geolo gists.

And yet, many geologists wonder: Why is the geom etry and scale of lolds, houdins, mulloons and shear zones so vanable? Why do these structures occur at all? Field geologists therefore commonly resort to mental models, invoking mechanisms that could have led to the structures ohserved in the field 'These models usually prompt allegations about the onentation of the principal stresses. Such mind experiments are often a drastic simplification as they extrapolate from familar dimen sions and condense the lactor of time while animating the Irozen movements found in rock struclures (cf Kuenen 1465). The accuracy of mental models could therelore benefil from investigating and quantifying the relationship belween stress and strain in elementary models It is a task of modern structural geology io provide this background knowledge.
'The relationship between stress and strain is complex because finite sirain can only be determined by time integration when the vorticities and stram rates are
known This work shows how both the flow geometry and mode ol progressive detormation are entirely con trolled by the inclination of the pancipal deviatoric stress axis relative to a stable relerence plane fixed 10 a physical houndary of the deforming rock volume Until now, this relationship between mode of deformation and onentution of the deviatonc stress had only been recognized lor two specific cuses. These are progressive pure shear and simple shear, for which the proncipal deviatonc stress is perpendicular to, and at 45° to, respectively, a fixed reference plane in the matenal The deformation tensor introduced here allows determi nation of progressive deformation sequences lor any stable onentation of the stress axes within the plane ol How Additionally, the rate of accumulation of finte strain can be predicted knowing the magnitude of the vorticity and stran rate as these are conmolled hy the magnitude of the stress and the eflective viscosity of the system

Progressive deformation ol circular markers has pre viously been visualized by Pfiffner \& Ramsay (1482) who oblained their results in an instructive approach superposing small increments of strain and rotation Ramberg's (1975a,b) earler treatment of progressive deformation was less illustrative but theoretically more sophisticated because it discussed the development of finte strain in terms ot stram rate and rotation rate, both at steady state The type of progressive defurmation and the associated pattern of particle movement paths (streamlines) appeared to he critically dependent on the relative magnilude of vorticity and strain rate (Ramberg $1975 \mathrm{a}, \mathrm{b}$). This was in agreement with previous develop ments in fuid mechanics where similar streamline pat terns were calculated by integrating the velocity gradient
tensor lor arbilary rallos ol vorlicily and stram rate (Giesekus 1462) Consequently, finite delormatom is prediciable hut only it the history of strain rate and vorticity contributions is fully known, and preferably these are al steady state
Two distinct classes of progressive deformation in planar fows were implied in Ramberg's (1475a, h) ana lyses, causing pulsaling and non pulsating strains Intro duction ol 'Truesdell's (145.3) kinematic vorticily number $\left(W_{k}\right)$ into geological lilerature allowed indexing of de formations, where firte stran oscillates or pulsates (1. $W_{k} \leq \infty$) and accumulates monotonically ($0 \leq W_{k} \leq 1$), respectively (Means et al. 1980) McKen zie (1474) had previously expressed the detormation tensor in terms ol vorticity and strain rate, and indicated for which ratios oscillatory and non oscillatory strams occur. Oscillatory progressive strans were also included in Pfifiner \& Ramsay (1982, cl Ramisay \& Huber 1983), but without relerence to the kinematic vorticity number It is worth noting that Giesekus (1962) also used a parameter ρ-identical to the kinematic vorticity number - lor distinguishing the closed and hyperbolic flow paths, which Ramberg ($1475 a, b$) later connected to pulsating and non pulsaling strains.

The kinemalic vortictly number is now increasingly used as a measure for mon-coanality of progressive detormation (cl. Ghosh 1987). But this is not a unique measure for charactenzing the progressive deformation history. This is because il characterizes only the siream line pattern. It includes no information concerning the boundary conditions and initial shape and onentation of the delorming volume with respect to that How pattern Dilferent progressive deformations leading to thinning and thickening of the same layer may have similar W_{h} s (see later). The kinematic vortictly number is therefore an incomplete measure of progressive deformation. W_{k} is still useful to distinguish pulsating and non-pulsating siratns, but the spectic mode ol non oscillatory strain is better characterized by the orientation of the deviatoric siress axes with respect to a particular reference plane

Current ambiguities about the role of stress and the importance of the kinemalic vorticity number could be
resolved by invoking hasic soncepts of Huad mechanos and conlinuum mechanics Although struclural geology is a practical, field oriented sotence, It may be worth while to stari from busic proncoples it this promises a better understanding of our held data. 'The discussion helow theretore introduces the stream lunction for homogeneous plane delormalion and demonstrates how it characterizes the pattern of particle movement paths The how field may also be characterized by a nor dimensional parameter ζ contained in the paricular stream luncion derived helow. However, the mode of progressive detormatoon depends upon the houndary conditions (viz stress orientation) and theretore specith cation of the mode of how is insufficient to characterize the detormation history

STREAM FIINCTION OF HOMOGENEOUS PLANE STRAIN

Like previous studies, this investigation of the system atics of progressive delormation is confined to ductile delormation patterns lormed (1) in plane strain, (2) at steady-state and (3) without volume change Addition ally, the relerence volumes considered are at a scale small enough to correspond to homogeneous detor mation 'The validity of these assumplions for creeping rocks will be retruspectively discussed in a later section
'The assumption of plane strain al steady state without volume change imples that the streamlines or particle movement paths controlling the deformation will re main within the plane containing the long and short axes of the strain ellipsoid. The entire sulte of how patlerns possible in two dimensional hows giving homogeneous deformation siructures is illustrated in Fig 1. These fow pallerns can be characterized by the following, ex pression of velocily components i(1, v, z) (cl Mason 1477).

$$
\begin{align*}
& 1_{1}=\gamma z \tag{la}\\
& 1_{1}=11 \tag{lb}\\
& 1_{i}=\xi_{1}, \quad, \tag{10}
\end{align*}
$$

Fig I Spectic examples ol Iwo dimensional laminar fows represented by (a) streamlines and (h) velucily components
 Alter Mason (1477, hg, I)
where i is a dimensionless scaling parameter varying between I and -1 , and j is the rate ol shear Familar cases ot progressive delormation occur lor $\zeta=-1$ (pure rotatoon and no strain), $\zeta=11$ (simple shear) and $\zeta=1$ (pure shear) The elliptictity of oscillatory streamline patterns, expressed as the raloo of the short to the long axis, is given hy the square ront ot $-\zeta$ (cl Fuller $\&$ Leal 1481, equalion 15)

It is more practical toexpress the flow held of Fig, 1 in terms of a stream lunctorn This, by definition, auto matically salisties the condituons of continuily and the lorce balance equation of Navier-Stokes. The stream function therefore is a solution of the biharmonic lunc toon lap lap $\psi=0$, which is only equal to zero tor incompressible flows as assumed here 'The stream func lion cannot be determined lrom this general equation (as is sometimes suggested in geological literature) be cause the number of solutions is infinite. A stream function descrobing the fow spectrum for homogeneous plane strain is obtained here by making proper use of its definition as $v_{1}=\lambda \Psi / \partial z$ and $v_{i}=-d \Psi / \partial u$ II can simply he recovered by integrating the velocity field equations:

$$
\begin{align*}
\Psi & =\int(d V / d x) \mathrm{d} t+\int(d \Psi / d z) \mathrm{d} z+c \\
& =\int v_{\mathrm{r}} \mathrm{~d} z-\int v_{i} \mathrm{~d} x+r \tag{2}
\end{align*}
$$

The following stream function is ublained by integration of expression (2), using the velocaty field equations (la)-(1c) and dropping the integration constant c using the condition $y^{\prime}=0\left[\mathrm{~m}^{2} \mathrm{~s}^{-1}\right]$ at $(1, z)=(0,0)$.

$$
\begin{equation*}
\Psi^{\prime}=(\gamma / 2)\left(z^{\prime}-\zeta_{1}{ }^{2}\right) \tag{3}
\end{equation*}
$$

Sireamlines similar to those in Fig 1 can be mapped accurately by equating ψ ' to a constant volumetric flow rate $\left[\mathrm{m}^{\prime} \mathrm{s}^{-1}\right.$, with unit vector in the y direction], using fixed values of ζ and an arbitrary \dot{j}. Expression (3) is only valid for the particular onentation of the co ordinate axes shown in Fig. 1. Although ζ is by definition related to this particular orientation of the reference Irame, it may still be used to characterize streamline patterns in general because co ordinate systems are arbitrary

KINEMATIC VORTICITY NUMBER

Flowlines such as outlined in Fig 1 can be used to predict patterns of progressive deformation ansing alter the insertion of passive deformation markers in such flows. Particle paths, streamlines, Howlines and streak lines will all be the same for the steady-state low Rey nolds number flows studied here (cli. Trition 1488). Flow markers will therefore delorm by displacement along the streamlines Figure 2 illustrates qualitative examples of progressive detormation for a unit square by stream
line patlerns for $\zeta_{1}=1,0.2,0,-10.1,-103,-116$ and -1 It is important to realize that the progressive defor mation ol the square is not only determined by the streamline pattern, but also by its inital oremtation with respect to the streamlines

Current geoscence literature usually reters 10 the kinematic vorlicily number W_{k} of progressive delor mation (Means at al. 1480) 'This orginates trom a particular convention for decomposition of the velocity gradient lensor (Truesdell 1453, 1454, 14h5, Truesdell \& Toupin 14h()). This non dimensional number character izes the relative importance of the princopal strain rates (i,) and voricity ($(i$,) derived trom the velocity gradient tensor L_{11} of steady state flows (Truesdell 1453, p 175, 1454, p 107)

$$
\begin{equation*}
W_{k}=\frac{|W|}{\left[\left.2\left(\dot{e}_{1}^{2}+\dot{\epsilon}_{1}^{2}+e^{\prime_{i}^{2}}\right)\right|^{1 / 2}\right.}, \tag{4a}
\end{equation*}
$$

where the magnitude of the vorticity vector $|W|=\left(\dot{\omega}_{i}^{2}+\dot{\omega}_{2}^{2}+\dot{\omega}_{i}^{2}\right)^{1 / 2}$. Note that the kinematic vorti. city number as written here contains the principal strain rates and not the normal strain rate components of the strain rate tensor (see later).

The kinematic vorticity number for a general two dimensional fow is less complex than in expression (4a). This is because the unchanged intermediate stretch axis $\left(S_{2}\right)$ in any plane detormation always remans perpendicular to the plane of flow The vorlicity vector ol plane (rotational) strains also will remain consistently perpen dicular to the plane of fow. Consequently, any isochonic plane strain will have $\dot{u}_{1}=0, \dot{\alpha}_{2} \neq 0, \alpha_{1}=\left(0, \dot{e}_{1}=-\dot{e}_{1}\right.$, $\dot{e}_{2}=0, \dot{e}_{3}=-\dot{e}_{1}$, assuming a convenient choice ol the co ordinate axes Substituting these values in expression (4a) gives the kinematic vorticty number for a general two dimensional fow:

$$
\begin{equation*}
W_{k}=\left|\dot{u}_{2}\right| /\left[\left.2\left(\dot{e}_{1}^{2}+\left(-\dot{c}_{1}\right)^{2}\right)\right|^{1 / 2}=\left|\dot{u}_{2} / 2 \dot{c}_{1}\right|\right. \tag{4h}
\end{equation*}
$$

It is worth noting that the relative magnitude of strain rate and vorticity may be visualized in Mohr diagrams (cl Lister \& Williams 1483, Passcher 1486, 1487, 1488, 144())

Perhaps the most powerful property ol the kinematic vorticily number is that it characterizes the geometry of particle movement paths (cl' Weifermars 1988b, fig 5). The geometry of two-dimensional flow patterns is simi lar lor all parss of (e_{1}, \dot{w}_{2}) which give the same kinematic vorticity number. It is therefore relevant to clarity the relatoonship between the kınematic vorlicity number, W_{k}, stream function, Ψ, and scaling parameter, ζ,
The relationship between $\|^{\prime}$ and W_{k} is stranghtlorward since the magnitudes of \dot{e}_{1} and $\dot{\omega}_{2}\left(\right.$ or $\left.\dot{\alpha}_{1}\right)$ are implied in ψ Components of the strain rate tensur can be obtained from the expressions.

$$
\begin{equation*}
\dot{e}_{u}=d v_{x} / \partial x=d^{2} V / d x \dot{d} \tag{5a}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{i}_{x z}=(1 / 2)\left[\partial v_{1} / d z+d v_{z} / \partial \lambda\right]=\frac{1}{2}\left[\partial^{2} \Psi / \Delta z^{2}-d^{2} \Psi / \Delta \lambda^{2}\right] . \tag{5b}
\end{equation*}
$$

Fig, 2 Examples al homogeneous progressive plane delormalion ol a passive strain marker by the lollowing particle movement paths (aher Weifermats 1488 b , hg, 6). (a) pure thear $\left(\mathbb{K},=1, W_{h}=(0)\right.$, (b) non asciltalory flow with components al pure and simple shear superpuned $\left(\zeta=112, W_{h}=07\right)$, (c) simple shear $\left(\xi=0, W_{k}=1\right)$, (d) oscillatory shear $(\zeta=-1) 1$,
 rotalion $\left(l,=-1, W_{h}=(x)\right.$

The voricity field is given by curl v or the curl vector:

$$
\left[\begin{array}{l}
\dot{u}_{1} \tag{ha}\\
\omega_{1} \\
u_{i}
\end{array}\right]=\operatorname{curl} v^{\prime}=\left[\begin{array}{l}
d v_{1} / d z-\partial v_{2} \partial \partial v \\
\partial v_{2} / \partial x-\lambda v_{r} / \partial z \\
d v_{r} / \partial v-\partial v_{v} / \partial v
\end{array}\right] .
$$

$$
\left[\begin{array}{c}
\dot{\omega}_{1} \tag{6b}\\
\dot{\omega}_{v} \\
\dot{\omega}_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\left(\partial^{2} V / \partial z^{2}+\partial^{2} \psi / \partial z^{2}\right) \\
0
\end{array}\right] .
$$

The kinematic vorticity number ol expression (4b) can now be written in terms of the stream lunction, using (5a), (5b) and (6b):

$$
\begin{equation*}
W_{\mathrm{k}}=\left|\frac{d^{2} \Psi / d z^{2}+d^{2} \Psi / \partial r^{2}}{a^{2} \Psi / d z^{2}-d^{2} \Psi / d r^{2}}\right| \tag{7a}
\end{equation*}
$$

with the denominator arising from $e_{1}=f_{1:}$ for the par Iicular orientation of the co ordinate system in Fig 1, where ϵ_{1} is always at 4.4 with respect to the co ordinate axes Substitution of the stream tunction ol expression (3) into (7a) and diflerentiation reveals that W_{k} and ζ are related by.

$$
\begin{equation*}
W_{k}=(1-\zeta) /(1+\zeta) . \tag{7b}
\end{equation*}
$$

Recall that spectal cases nccur lor $W_{k}=0$ (pure shear strain),$W_{k}=1$ (simple shearstrain), and $W_{k}=\infty$ (ngid body rolation)

COMPUTED PARTICLE PATHS

The progressive delormation of a materal volume is dictated by the particle movement paths. The stream function enables mapping of the full streamline pattern but was designed to calculate the volumetric flow rate between these streamlines and is not suitable for tracing the movement of individual particles in time The math ematical descripions providing the tramework to track movement paths of individual particles in time are oullined in Appendıx A.

It has long been cusiomary in geological literature to reler to two basic cases ol progressive deformation, pure shear and simple shear Both of these plane delor mations imply a particular assumption about the orientation of the princtpal stress axes with respect to a relerence surfiace of the deforming volume (see later) Changing the onentation of the stress axes can result in progressive deformation sequences which are inter mediate between pure and simple shear. A progressive deformation is fully predictable and characterized by the pnncipal stress onentation, provided that this orien tation remains constant with respect to the reference surtace It is then possible to make inferences about the time required to accomplish a particular finute defor mation pattern

Consider a specitic case• a cube of viscous material resting, on a solid plane, termed the relerence plane in what lullows. 'This unit volume is subjected to a stress field, and may slip treely over the relerence plane relative to a single pin-axis (Fig. 3) The plane of section contains the major stress axes and coincides with the $X Z$-plane of a Cartestan Irame ol reference. The reference plane cuincides with the $X \gamma$-surface and the pin axis is parallel to the Y axis. The bottom of the cube is kept in light contact with the reterence plane for any orientation of the deviatoric stress field. The cube may be thought of as part of a body with infinite lateral extent in the direction of the second pnncipal stress axis, so that deformation remains plane. Also, the cube remarns incompressible in response to instantaneous stresses and long termi volume changes (accompanying solution transfer and metamorphic processes in rocks) also are excluded. Consequently, delormation will be isochone,

Fig, 3 Sketch section through the delorming unit volume to show dethitions ol the angle, l, of the pmincipal deviatonc sitress, 1, , with respect in the nurmal to the relerence plane, the inclination, θ, of the major ixis of the stratn ellipsold, and the proncipal stretch, S_{1} The angles H and $\left\langle\right.$, are measured trom lines $4 J^{\circ}$ apart to account lor the lact that S_{1} th the incremental strain ellipsoid is, by definition, always the largest stretch and thus perpendicular to I_{1} 'The quantilies incl (θ), polerol (β), xlen, xims, xstep, zlen ($[1)$, and asisl $\left(S_{1}\right)$ are used extensively in the compuler program ol Appendex B and are included here mainly lor the record.
and additionally, is assumed tw be homogeneous on the scale of the unit volume considered here The assump tion of homogeneous deformation implies that body forces in the unit volume are neglighbly small as compared to the surtace lorces.

The rate of displacement (i, ot particles x, in $X Y^{\prime} Z$ space can he described by the Eulenan rate of displacement equation.

$$
\begin{equation*}
x_{1}=L_{11} x_{1} \tag{8}
\end{equation*}
$$

The components of the rate ol displacement tensor L_{11} for the situation outlined in the defintion sketch of Fig. 3 can be obtained as follows Realize that the components of solid body rotation in the anti symmetric part of L_{11} do not alter distances between fluid particles and thus do not involve stress. The siress induces strain rates, as descrabed by the strain rate tensor, which for the configuration of Fig. 3 is (using $\dot{e}_{: s}=-\dot{e}_{1,}$).

$$
D_{11}=\left[\begin{array}{ccc}
\dot{e}_{x 1} & 0 & \dot{e}_{n 1} \tag{9a}\\
0 & 0 & 0 \\
\dot{\epsilon}_{n} & 0 & -\dot{i}_{n}
\end{array}\right]
$$

The boundary condition of plane strain reduces the vorticity tensor lo:

$$
W_{11}=\left[\begin{array}{ccc}
0 & 0 & -\dot{u}_{1} / 2 \tag{4b}\\
0 & 0 & 0 \\
\dot{u}_{v} / 2 & 0 & 0
\end{array}\right]
$$

Recall that $\dot{e}_{x_{z}}=\dot{e}_{a}=\frac{1}{2}\left[\left(\partial v_{z} / \partial x\right)+\left(\partial v_{1} / \partial z\right)\right]$ and $\dot{u}_{v}=\left[\left(\dot{d} v_{2} / \partial x\right)-\left(\partial v_{x} / \partial z\right)\right]$ (Appendix A) The slable reference plane dues not allow for rotation ol the base of the block relative to the $X Y Z$ trame ol relerence, so that $d v_{2} / \partial x=0$. This implies that, numerically, $\dot{w}_{v} / 2=-\dot{e}_{12}$,

Consequently, the rate of displacement tensor $L_{\text {I }}$ can be expressed in terms of the normal and shear com ponents of the strain rate

$$
\left.L_{11}=\left\lvert\, \begin{array}{ccc}
r_{11} & 0 & 2 \dot{s}_{n} \tag{4c}\\
11 & 0 & 0 \\
0 & 0 & -\dot{t}_{n 1}
\end{array}\right.\right]
$$

This is only valid for the chose of relerence trame as defined in Fig 3. Note that tensor shear strain rate i_{x} relates to the engmeering shear strain rate γ_{1} by $2 e_{u}=\dot{j}_{n}$

The position ol any particle at a particular time t can be found by solving the partal differentials of the rate. of displacement equations (8) using L_{11} as defined in expression (4 c). For complex flow fields, this integration can only be solved by numerical iteration (e.g. McKen ze 1979), but analylic integration is stratghtforward for the simple flow and boundary conditions considered here. Methods lor analytic solution of the time derivalives ol the velocity tield have been explained in detal by Ramberg (1475a,b), but his equations may be abbrevi ated considerably (see Appendix A).

Solution of equations (8) with the paricular L_{11} of expression (4 c) yields the deformation tensor (using Appendix A):

$$
F_{\| \prime}=\left[\begin{array}{ccc}
\exp \left(\dot{e}_{1 t} t\right) & 0 & \left.2 \dot{e}_{1 ;} / \dot{e}_{1 t}\right) \sinh \left(\dot{e}_{1, t} t\right) \tag{10}\\
0 & 1 & 0 \\
0 & 0 & \exp \left(-\dot{e}_{1 r} t\right)
\end{array}\right]
$$

which is similar to the matrices comprised in equation (6) of Giesekus (1962), equation (38) of Ramberg (1975a) and equation (28) of McKenzie (1979)-the first and last only after a $45^{\prime \prime}$ transformation ol the reference frame.

The normal and shear components of the strain rate tensor $D_{\imath,}$ are related directly to $\tau_{\mu \mu}$ and $\tau_{r i}$, the normal and shear components of the two-dimensional deviatoric stress tensor $T_{1 /}$ (see Appendix A, equation A5):

$$
\begin{align*}
& \epsilon_{1 u}^{\prime}=\tau_{\mathrm{u}} / 2 \eta \\
& \dot{\epsilon}_{u_{i}}=\tau_{\mathrm{t}} / 2 \eta \tag{11b}
\end{align*}
$$

The viscosity η in expressions (Ila) and (llb) may be either Newtonian or an effective viscosity accounting for non Newtonian flow This follows from the assumption of homogeneous deformation, which implies that the deviatoric stress is constant throughout the unit volume. Since there is no spatial variation in the strain rate, the dynamic viscosity may not vary during flow. This is fulfilled if the rheology ol the unit volume is Newtonian, but also for any other intrinsic rheology as each pair of stress and stram rate values plots as a single point in the log.log space of a flow diagram (e g see fig. 3 in

Wepermars \& Schmeling 1486) Note that I preter using $r_{1,}$ lor the deviatoric normal stress tather than $\sigma_{1,}$, adopling Fung's (1465) system ol reserving z tor devia toric stresses and a for the total stresses, the indexes are sufficient to distingush the normal and shear com ponents

The normal and shear strain rates can now be related directly to the orientalon ξ of the pnncopal deviatoric stress r_{1} with respect to the normal to the reterence plane (Fig 3), making use ol the equations lor the Mohr circle ol stress (cl. Means 1476)

$$
\begin{align*}
& r_{r 1}=\frac{r_{1}+r_{1}}{2}+\frac{r_{1}-r_{3}}{2} \cos 2 \xi \tag{12a}\\
& r_{r:}=\frac{r_{1}-r_{3}}{2} \sin 2 \xi \tag{12h}
\end{align*}
$$

For biaxial isochoric flow $r_{1}=-r_{4}$ so that expressions (12a) and (12b) simplify to.

$$
\begin{align*}
& r_{11}=\tau_{1} \cos 2 \xi \tag{1.3a}\\
& r_{14}=r_{1} \sin 2 \xi_{1} . \tag{1.36}
\end{align*}
$$

Substitution of (13a) and (13b) into (11a) and (11b) yields:

$$
\begin{align*}
& \dot{e}_{11}=\left(r_{1} \cos 2 \xi\right) /(2 \eta) \tag{14a}\\
& \dot{e}_{1:}=\left(r_{1} \sin 2 \xi\right) /(2 \eta) \tag{14b}
\end{align*}
$$

It follows from expressions (14a) and (14b) that the deformation tensor F_{11} in expression (10) is lully de scribed if the orientation ξ and magnilude t_{1} of the principal deviatoric stress is known lugether with the viscosity and the time I elapsed since the onset ol delormation

Consequently, the movement path ot any particle (x_{10}, v_{0}, z_{0}) is descrabed by the deformation tensor ex pression:

$$
\left[\begin{array}{l}
x \tag{15}\\
z
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
1_{11} \\
z_{11}
\end{array}\right]
$$

with

$$
\begin{array}{ll}
A=\exp (R, \cos 2 \xi) & (\text { I } a \mathrm{a}) \\
B & =\tan 2 \xi\left[\exp (R, \cos 2 \xi)-\exp \left(-R_{1} \cos 2 \xi\right)\right] \\
C & =0 \\
D & =\exp \left(-R_{1} \cos 2 \xi\right) \tag{lhd}
\end{array}
$$

and non-dimensional time $R_{t}=\left(t t_{1}\right) /(2 \eta)$ Nole that v_{0} does not change in planar Hows, so that $v=v_{11}$ in all cases.

Expression (15) can be formulated in terms ol algo

Fig 4 Computer graphic representation ol streamline pallerns induced by the principal deviatonc siess, I_{1} (compressive, plane strain), ol paricular onentations (as spectied in the caption ol each image and oullined by the green line) with respect tu the relerence plane The rheology is isotiopic (anisotropy lactor $=1$). The direction of fow along the hyperbolic particle movement palhs in away from the asymplote nearest the major principal stress axis and towards the asymplote furthest Irom the stiess anis Flow along, the asymplotes themselver is away from and
 about the Z axis, but look ditterent as the algonthm used to visualize them picks different, evenly spaced particles along, the \mathcal{X} ax is and Z axis, lor ξ - $44^{\prime \prime}$ and $\xi \geq 46^{\circ}$, respectively 'The images were photogaphed directly trom the monitor and may include slight distiortions arising tiom ithe
 the systemalic relationship with the pmonpal deviatonc siress axis is hist oultined here
'The role of stress in ductile detormation

Vorticity mmber: . 34
Inclination asympote to zenith (Cegr.): 20
Anisotropy: 1
Inclination stress
to zenith (degr.): 10

Uarticity mumber: 1 Inclinetion asyptote to zenith (legr.); \%	fintemtriyy Inclinution stress to zenith (deys.): \&s
$\stackrel{\square}{ }$	
	K

Worticity nunber: . 86 Inclimation asynptote to zenith (degr.):

$$
\text { _ } 68
$$

Anisotroyy- 1 Inclination stress to zenith (dejtr.): _ 30

Milevtripy 1
Inclination stress
to zenith (degr.):
-10

Inclination asymptote to zenith (degr.):
_- 28

Wort icity munter, y
Inclination asymptote to zenith (degr.):
-8 \rightarrow
$-$
hinisutropy 1
Inclination stress
to zenith (degr.):
-8

$$
\begin{aligned}
& \text { Shatir its wirts } \\
& \text { Inclination asyaptote } \\
& \text { to renith (degr.): }
\end{aligned}
$$

- 128

Incilimation stress
to zenith (degr. 1 .
68

Hor ticity arlie
Inclination asymptote
to zenith (degr.)
zenith (degr: _ 148
inclimetion strens
to zenith (deyr J:
78

Inclim
to zenith (deg
-168
Incliantina atress
to zenith CAeyr. 1
9月
 Itcliantion ssymptote to zenith (degr.):
-180
:1\%overg
In.limtim staess
to zeath taris:
-39
reference plane

4itiotrops. !
anclination stress
0 zenith (degs.):
_ 45
rination asymptot to zenith (degr.):
-98

rithms and run on a PC^{-1} ir Laptop computer equipped with graphocs lo visualize the streamline patterns ansing in our unil volume in response to any stress with a particular ortentation L Soltware developed by the uuthor is discussed in Appendix B. Figure 4 illusirates several examples of two dimensional fow patterns, emphasizing the gradual change in the pattern as the inclination of the principal stress axis vanes from paral lelism ($\left(5=4()^{\prime \prime}\right)$) (orthogonality $\left(\xi=\left(0^{\prime \prime}\right)\right.$ with respect to the reterence plane The how pattern shows the movement of particles about any point within the detorming unit volume The honzontal axis (in blue) is parallel to the reference plane at the base of the block Note that the streamline patterns are fixed for any particular ξ, irrespective of the magnitude of τ_{1}, and η, provided that 1. (). The anisotropy tactor is unity for all streamline patterns in Fig 4 as the matenal is isotropic. The effect of orthotropy has been lreated elsewhere (Weijermars in preparation)

Examples of some of the flow palterns in Fig. 4 have been previously visualized in analyifal studies (Ram berg 1475a,b, Ramsay \& Huber 1983) and expenmental studies (Fuller \& Leal 1481, Bentley \& Leal 1986), or both (Gessekus 1462). However, the systematic relationship ol these flow patterns with the onentation of the deviatoric stress axes is outined here for the first time

FLOW ASYMPTOTES

The streamline patterns in Fig. 4 all possess a unique set of two straght streamlines, except for $\xi=45^{\circ}$ where they comende 'These stranght streamlines-traces of the eigenvector planes-are asymptotes to the hyperbolas that form the flow patterns One eigenvector plane is asymptotic to the exit fow, the other is asymplotic to the entrance flow 'The asymplote to the exil flow coincides with the X ' axis for any $\xi \cdot 45^{\prime \prime}$ 'The asymptote to the entrance flow coincides with the X axis for any $\xi: 45^{\circ}$

Figure 4 also specihes the kinematic vorticity number lor each flow 'The acute angle (α) between the \boldsymbol{X} axis and the other fow asymplote is related to the kinematic voricity number by (cl. Bobyarchick 1486).

$$
\begin{equation*}
W_{k}=\cos \alpha \tag{17a}
\end{equation*}
$$

The kinematic vorticily number W_{k} can also be related to the orientation 5 ol' the principal deviatoric stress τ_{1} This is because W_{k} can be expressed as a function ol éu and \dot{e}_{1}, i.e. the normal and shear components of the
two dimensional strain rate tensor. The vorticity $\dot{\omega}$, has a magnitude equal to that ol the engineering shear strain rate $-j_{x:}=-2 i_{n}$. Substitulion in expresswon (4h) and using expressions (14a) and (14b) yrelds'

$$
\begin{equation*}
W_{\mathrm{k}}=\sin 2 \zeta . \tag{17b}
\end{equation*}
$$

Combining expressions (17a) and (17b) and eliminaling, W_{k} yields the relationship between a and ξ;

$$
u=\cos ^{-1}(\sin 2 \xi) .
$$

Negative angles are measured clockwise and positive angles are measured anli clockwise. Expression (18a) can be simplified by defining $\alpha^{\prime}=\Psi()^{\prime \prime}-\alpha$, so that

$$
\begin{equation*}
\left.a^{\prime}=2 \xi \quad \text { or } \quad \alpha=9\right)^{\prime \prime}-2 \xi \tag{118b}
\end{equation*}
$$

Expression (18 b) has been used to determine the inclination of the second asymptote with respect to the normal to the reterence plane for all fow patterns in Fig. 4. Note that the asymplote inclinations in Fig. 4 are specified as positive angles, ie. measured in an anti clockwise direction with respect to the reference plane normal or zenith. The inclination of the asymptote to the hyperbolic flow paths is equal to twice the angle of inclination ol the deviatonc stress

FINITE DEFORMATION PATTERNS

A deformation may be termed progressive if the ohserver is able to examine a continuous sequence of configurations ithrough which a body passes, unlike the general term 'delurmation' which relers to the dilfer ence in geometry of Iwo distinct finite states ol a body (Flinn 1962). The particle paths computed and illustrated in Fig. 4 allow reconstruction of the progressive deformation of matenal volumes.

Again, consider the deformation tensor of expression (1.5) with the terms A, B, C and D as specified in expressions ($16 a$)-(16d) 'The principal axes of the strain ellipsoid at any time t can be characterized in terms of eigenvalues of the detormation tensor, S_{1} and S_{1}, using the proncipal quadratic elongations λ_{1} and λ_{3}. The latter-themselves engenvalues of the strain ellipse ex pression in matrix lorm (Ramberg 1975a, p 30)-can be calculated from the detormation tensor components A, B, C and D, using the following algonithms-

$$
\begin{align*}
& \lambda_{1}=05\left[(K)+V\left[\left(K^{2}\right)-4(A D-B C)^{2}\right]\right] \tag{190}\\
& \lambda_{1}=05\left[\left(K^{\prime}\right)-V\left[\left(K^{2}\right)-4(A D-B C)^{2}\right]\right] \tag{19b}
\end{align*}
$$

with $K=A^{2}+B^{2}+C^{2}+D^{2}$ For example, a unit sim
 unented as in Fig of' The images are non dimensional 'The increments of tinite stiain are 2 Ma apari lor a rock with isotropic viscontly ol Ifl' Pas deformed by a deviatoric stress of 20 MPa 'This comesponds to a sirain rate of $10^{14} \mathrm{~s}^{-1}$ The lime scale can be adapled to olher silualions applying, the scaling, rulesol expressions (23a) and (2.3b) The iwo hyperbolic flowlines (in red) show the movement ol particles in the upper left and upper nght hand comers of the delorming, volume, relative to the pin point al the intersection ol the stress asis (in green) and the ielerence plane (in blue) 'The full how pallem around any paritle above the releience plane is given in Fig 4 'The onentalion ol the axis ol largesi stretch al the stram ellipsoid al intinitely large sirain is indicaled by the inclinalion ol the asymplute (in red) Ponilive angles are measured anticlock wise The images were photographed directly trom the monitor and are not corrected for the curvalure of the streen The character ol the images was inspired hy Ramberg', (1474 a) hg, 3, but again, the systematic dependence ol the progtessive detormalion on the stiess onentation is hrst
ple shear which has $(A, B, C,[))=(1,1,0,1)$ gives $\lambda_{1}=20_{2}$ Expressions ($14 a$) and (IЧb) were adopled Irom Ramsay \& Huber (1483 , appendix B, equalion B 19, p. 287) and are also implied in Thompson \& 'Tail (1874) and Jaeger (1476). The length of the mapor and minor axes of the strain ellipsord can be expressed in terms ol the stretches S_{1} and S_{3}

$$
\begin{align*}
& S_{1}=1+c_{1}=V \lambda_{1} \tag{20a}\\
& S_{1}=1+c_{1}=V \lambda_{1} \tag{20b}
\end{align*}
$$

and the axial ratio $R=V\left(\lambda_{1} / \lambda_{3}\right)$. Note that S_{1} and S_{1} can also be obtaned directly from $R=S_{1} / S_{3}$ and the hound. ary condition of plane isochonc strain so that $S_{1} \cdot S_{3}=1$. Consequently, the ellipticity may be written as $R=\left(S_{1}\right)^{2}=\lambda_{1}$ The condition of plane sirain implies that the intermediate axis of the strain ellipsord, S_{2}, remains unchanged so that $S_{2}=1$.

The angle θ between the major axis of the finite siratn ellipsoid and the X axis can be calculated for any time t, from the expression (cl. Ramsay \& Huber 1983, equation B.14; also implied in Thompson \& Tail 1874 and Jaeger 1456):
$\theta=0.5 \arctan \left[(2 A C+2 B D) /\left(A^{2}+B^{2}-C^{2}-D^{2}\right)\right]$.

Recall that the rotation of the major axes of the stratn ellipsod is not the same as the rotation of particular material lines

The horizontal and vertical dimensions of our de formed, initially cubic, unit volume are equal to A and D, respectively. Any inıtially ventical marker lıne within the cube is, after deformation, inclined at angle β with respect to the reference plane.

$$
\begin{equation*}
\beta=\arctan (D) / B) \tag{22}
\end{equation*}
$$

The algonthms above allow the computation of any parameter relevant to the progressive deformation hislory of a unit volume A computer program can be written for calculating these parameters and displaying stages in the evolution of finte strain pertinent to a particular delormation sequence (Appendix B).

Figure 5 visualizes the progressive deformation of a unit cube for vanous onentations of the principal stress axis. The base of the cube is pinned at one corner and slips freely over the reference plane. The pindine is perpendicular to the plane of section of Fig. 5 and is visible as a pin point in the lower lell hand corner for $0^{\circ} \leq \boldsymbol{\xi} \leq 45^{\prime \prime}$ and in the lower nght-hand corner for $\left.45^{\prime \prime} \leq \xi \leq \varphi\right)^{\prime \prime}$ The unit cube of this particular example comprises a rock of viscosily $10^{21} \mathrm{Pas}$, deformed by a deviatonc stress of 20 MPa . This corresponds to a typical geological strain rate of $10^{-14} \mathrm{~s}^{-1}$ The stages shown in Fig 5 are 2 Ma apart. Stoges of reciprocal deformation are included in Fig. 5 to emphasize that the patterns for simılar W_{k}, occurring at ξ and $\left.\xi^{\prime}=(9)^{\nu}-\xi\right)$, look simı lar, bui difter in the sense of reciprocal and progressive deformation.

Figure 6 illustrates the progressive deformation of a cubic block in a plane stress field tor various values ol' $\boldsymbol{\xi}$,

Fig ${ }^{6}$ Progressive delormalion ol a cubic block viewed perpenditu lai to the pin line bisecting the bullom plane 'Thus the block is in iwo equal parts each slipping, withoul tricion over the reterence plane in apposite directions Casen given by ε, valuen of $0^{\prime \prime}, 30^{\prime \prime}, 44^{\prime \prime}$ and arr are illustraled Increments of hnite stram are? Ma apari lor a rook ol isotropic rheology delorming al astram rate ol $10^{-14} \mathrm{~s}^{-1}$ 'The intent is It emphasize the fhickening vi thinning, ol the layer (ol which the cube is part) resiling on the relerence plane, for cases al ξ, $44^{\prime \prime}$ and ξ - $44^{\prime \prime}$, respectively Expression (23b) can be used lor Iranslation la oher rheologes and strens helds
with the pin line bisecting the bottom surlace in two equal, rectangular areas that may slip Ireely over the rele rence plane. Increments ol finite strain are simular to those shown for the same value of ξ in Fig 5 , but the pinline is now posilloned so that the macroscopic how field includes all the fowlines illustrated above the X axis in Fig 4 for the corresponding ξ

The relationship between W_{k}, Σ and a (or $a^{\prime}=90^{\prime \prime}-a$) has been graphed in Fig 7 according to expression (17b). Note that flow palterns in Fig 4 are the same tor ξ and $\xi^{\prime}=40^{\prime \prime}-\xi$ except for a rigud body rotation of 180° about the Z axis However, the direction of flow is not the same, so that the mode of progressive deformation will be different. Companson of the results in Fig. 5 reveals that angles 5 for t_{1} orientations larger and smaller than 45° give the same W_{k}, but involve different progressive deformations leading to layer thick ening and thinning, respectively. Layer thinning and thickening is also visible in Fig. 6. Figure 7 theretore emphasizes that the kinematic vorticity numbers for ξ and $\xi^{\prime}=4()^{\circ}-\xi$ are identical, despite ditlerences in the

Fig. 7 Relationship beiween the kinemalic vorticity number W_{k} and the angle ξ heiween the mapor princtpal stress axis and the normal to a reterence plane The angles a and $a^{\prime}=M \boldsymbol{T}^{\circ}-a$ between the iwo asymploles of the fowline pattems lor a pariculat L value are also graphed
progressive deformation. Consequently, the stress onentation is a unique measure lor the mode of progress ive deformation-the kinematic vorticity number is not

The time increments of Figs. 5 and 6 can be translated to other tume scales using the following scaling rule (combining equatıons 12 c and 12 f ol Weıpermars $\&$ Schmeling 1986):

OI

$$
\begin{equation*}
t_{\text {new }}=\left[\left(\eta_{\text {new }} \tau_{\text {old }}\right) /\left(\eta_{\text {old }} \tau_{\text {new }}\right) \mid t_{\text {nld }}\right. \tag{2.3a}
\end{equation*}
$$

$$
\begin{equation*}
t_{\text {new }}=\left(\dot{e}_{\text {old }} / \dot{e}_{\text {new }}\right) t_{\text {old }} \tag{23b}
\end{equation*}
$$

The time scale $t_{\text {old }}$ of Figs 5 and 6 can be converted to new time scales $t_{\text {new }}$ by substituting into expression (23 a) the following values kinematic viscosity $\eta_{\text {uld }}=$ $10^{21} \mathrm{Pas}$, deviatonc stress $r_{\text {cld }}=20 \mathrm{MPa}$, and $r_{\text {new }}$ and $\eta_{\text {new }}$ of the new delormation sequence.

Alternatively, the time scales of Figs. 5 and 6 (and 9 and 10 , see later) can be non dimensionalized $\left(R_{t}\right)$ according to the following expression:

$$
\begin{equation*}
R_{1}=\left(t_{\text {old }} \mathrm{t}_{\mathrm{old}}\right) / 2 \eta_{\mathrm{old}} \tag{24a}
\end{equation*}
$$

or

$$
\begin{equation*}
R_{1}=t_{\text {old }} \dot{c} \dot{c o l d ~} \tag{24b}
\end{equation*}
$$

For example, the non dimensional time for the I Ma. isochron in Fig 10 is $R_{t}=0.315$

OSCILLATORY VS MONOTONIC STRAINS

Figures 4 and 5 and the assoctated theory comprise the entire spectrum of stress orientations possible in Iwo dimensional, homogeneous, steady-state flows. A pecu liarity of this spectrum is that streamline patterns charac teristic of oscillatory strans cannot be generated by the model of Fig. 3. The relationship between the kinemalic vorticity number and the stress orientation given in expression (17b) explains why monotonic and not oscil

Fig, 8 Sketches al an experimental sel up lor smulating (a) non ascillatory (ie $\quad 0 \leq W_{k}=1$) and (h) ostillatory (iee 1 - $W_{h} \leq \infty$) delomations A cylinder of radius, is iolled between a slable relerence plane and a movable top plate loaded with a mass M 'The velocily of the lop plate is 1 , 'The cylinder in (a) is pinned to the reterence plane, thus limiting the amount ol rotation 'The cylinder in
(b) may rolate treely between the iwo planar surfaces
latory strains occur. It appears that W_{h} vanes only between 0 and I for any particular onentation of the stress field; no oscillatory strams occur in this range (Fig 7).

Oscillatory detormation histones occur if $W_{h} \cdot 1$ and Appendus A outines why the deformation tensor is ditlerent from that oblained here il complex eigenvalues are involved in the solution of the integration of the rate ol displacement equatıons Pfiffiner \& Ramsay (1482) correctly pointed out that only flow paths leading 10 delormalions lying between pure shear and simple shear are geologeally relevant lor tectonic processes on a regonal scale Ramberg (1975a, p. 34) explained that oscillatory strains may occur only within competent inclusions enclosed in a sotter matrix 'The rate of strain of the inclusion must be less than that in the matrix to enhance the vorticity. This condition is only met on a small scale, unless applicable to batholiths separated by supracrustals 'The concept may be clanfied using a mechanical analog, where the strain rate and vorticity are caused by (wo separate mechanical components.

Figures $8(a) \&(b)$ show the pnociple schematically. A pair of initially circular cylinders, both consisting of the same viscous matenal and deforming by plane stran, rests on a stable reference plane, with the cylinder-axis perpendicular to the plane of flow (and view). The top of both cylinders is in contact with a plate of negligible weight. Vorticily may be given to either cylinder by pulling the top plate homzontally with velocity v_{x} per pendicular to the cylinder axis. A pnncipal strain rate may be added by loading the top plates with a mass M as indicaled in Fig 8 Body lorces inside the cylinders are negligible in comparison to the surtace forces

The systems of Figs. 8(a) \& (b) difter in only one respect-the boundary condition The magnitude of the vorticity in Fig $8(a)$ is limited by fixing the base of the cylinder to the reference plane 'The top of the cylinder may roll in response to a torer pulling the top plate at rate v_{1}, without allowing any slip al their contact. Progressive simple shear will occur il the surface load is zero ($M=0$) and $v_{x}, 0$. Pure shear fow occurs it $v_{1}=0$ and $M+0$. Consequently, the configuration of Fig. 8(a) allows only for the occurrence of non oscillatory defor mation histones.

 (2hd)-(2hd) Equalions (2bas)-(2hd) are a good approximalion up lo
 $111^{-14} 4^{-1}$

'Time (Ma)	S_{1}	$\underset{(\text { (") }}{H}$	H(equallons 2ha-2tad) (")
I	136	16.27	3644
2	181	2884	24 th
3	232	2128	2445
4	287	1419	2171
4	1.44	1514	1444
6	4113	1192	1782
7	463	1218	1645
K	423	10 RI	1457
4	¢ 84	470	1476
10	646	874	1411

In contrast, the magnitude of the vorticity in Fig 8(b) is unlimited because the cylinder can roll freely, but without slip, between the reference plane and the top plate. Perfect rigid-body rotalion will occur if the surlace load is zero $(M=0)$ and $v_{n} \because(1)$. Again, pure shear flow occurs il $v_{1}=0$ and $M>0$, but $W_{k}>1$ lor any other combination ol M and ν_{x}. This is because ν_{x} cannot effectively transier shear stresses to the surtace of the cylinder due to the boundary condition of tree rotation. Consequenily, the expenmental configuration of Fig. 8(b) allows the modelling ol oscillatory deformations

An experiment of oscillatory deformation may be provisionally simulated by moulding a cylinder out of a high viscosity material such as PDMS (viscosity 5×10^{4} Pas, see Weijermars 1486). This viscous cylin der is then loaded by a copy of this journal and subjected to vorticity by rolling the cylinder between your desk and the joumal. The distance between the journal and the lable will periodically decrease and increase if you pull the journal at a slow, constant speed parallel to the table. The cylinder itself will deform in an oscillatory fashion by approximately plane strain if the cylinder axis is long relative to its radius.

STRESS FIELDS

Figure 5 suggests that, for any particular onentation of the principal deviatoric stress, the magnitude of the finite strain evolves coevally with a particular amount of finite rotation in a fashion dictated by the particle movement palhs The relationship between the magnilude of the stretch and the progressive rotation of the principal axis of finite strain has previously been estab. lished for the spectal case of simple shear, i.e $\xi=45^{\circ}$ (Ramsay 1967, P 85 Hi) and other cases are implied in Ramsay \& Huber (1483, session 12). It is useful to investigate the relationship between the principal stretch and rotation for any orientation of the principal stress.

The unique relationship between the principal stretch S_{1}, straın ellipsoid inclination θ and inclination ξ of the principal deviatoric stress, can be demonstrated by straight forward mathematics. Equation (21) expressed
H in terms ol the delormation matrix components A, B, C and $[$. These components, as specified in expressomis (1ha)-(Ifd), can be rewritten in termsol $S_{\text {I }}$ and 5 'This is because the non dimensional time R, used in expressions (lfa)-(Ifd) is, in lact, also a measure of the fintte strain-

$$
\begin{equation*}
R_{t}=\left(t r_{1}\right) /(2 \eta)=t \epsilon_{1}=\ln S_{1} \tag{25}
\end{equation*}
$$

Substitution of expression (25) into expressions (lad)(lod) yrelds:

$$
\begin{align*}
& A=S_{1}^{\cos 2 l_{1}} \tag{2ha}\\
& B=\tan 2 \xi\left(S_{1}^{\cos 2 l_{1}}-S_{1}^{-\cos 2 l_{1}}\right) \tag{2ab}\\
& C=0 \tag{2fc}\\
& D=S_{1}^{-\operatorname{con} 2 l_{1}} \tag{26d}
\end{align*}
$$

It is now obvious that equation (21) logether with expressions (26a)-(26d) descnbe the unique relation ship between ξ, S_{1} and θ. Note that expression (26b) is undefined for $\xi=45^{\prime \prime}$, but this can be circumvented by laking any \mathfrak{L} very close 10 this particular angle Equations (2ha)-(2hd) are only strictly valid tor pure shear (i.e. $\xi=()^{\prime \prime}$ or $\left.\xi=9()^{\circ}\right)$, because in other cases the approximation of R_{r} by $\ln S_{1}$ in equation (25) becomes inaccurate due to the mismatch between the incremental and finite strain ellipsoids in non coaxial detormations The largest mismatch occurs for simple shear ($\xi \rightarrow 45^{\prime \prime}$), but 'Table 1 shows that equations (26a)-(26d) still are a good approximation of the exact solutions of equations (Iba)-(IGd) for stretches smaller than 3.

Figure 4 graphs the relationship between the inclina tion angle, \boldsymbol{A}, of the stratn ellipsord major axis (with respect to the reterence plane) and the magnitude of the major stretch S_{1} lor a lamily of ξ s (using equations IGa-lod) Note that the principal axes of the ellipsods for stress and incremental stram (or strain rate) coincide so that $\theta=\xi$ at the onsel ot the deformation Recall that θ and ξ have heen detined $\varphi()^{\circ}$ apart (Fig 3) to accounl for the fact that S_{1} of the instantaneous or incremental sirain ellipsoid is always perpendicular to I_{1} The suh sequent evolution of finte strain and rotation of the stram ellipse is outloned by the subhorizonial curves in Fig. 9.

The plot of Fig. 4 is non dimensional, except for the asochrons These are scaled for the particular case ol rock with an isolropic viscosity of 10^{21} Pas, detorming by a deviatonc stress of 20 MPa al a stram rate of 11^{-14} s^{-1}. The isochrons are included in Fig, 9 lo demunstrale that pure shear is much more ellective than simple shear for achıeving large straıns for a given deviatoric stress. This applies only 10 isolropic rheologes; the reverse holds for orthotropic viscossties where the plane of weakness lies in the shear direction (Weifermars in preparation). The ditlerence belween the finite strains achieved in pure shear and simple shear increases as the deformation progresses (Fig 9). The isochrons in Fig 4 can be translated to uther time scales using the scaling rule ol expression (23)

Figure 10 shows an alternalive graph plotting the change in orthogonal thickness of a deforming layer

 loa relerence plane and the magnitude of the stretch, S_{1}, and elliplicily, R, caubed hy principal devialonic stress, t, inclined

 (20) and (21)
versus the rotalion ol a marker line intially perpendicu lar to the layer, for a variety of orientations, ξ, of the principal stress axis. Layer thickening occurs for $5 \cdot 45^{\prime \prime}$ and thinning for $\xi \cdot 45^{\prime \prime}$, whilst thickness remans unchanged in smple shear ($\xi=45^{\circ}$) Layer thinning is lastest lior pure shear at $\xi=10^{\prime \prime}$, and lastest thickening occurs by pure shear at $\zeta=\varphi()^{\prime \prime}$ Note that the asymmet ric 'bulge' in the isochron patlem indicates that the rotation of the initial normal is lasiest lor simple shear ($5=45^{\circ \prime}$) at the onset of delormation, hut occurs laster for smaller values of ξ il the deformation progresses

DETERMINATION OF PALAEOSTRESS

Ductile deformation patterns caused by solid state creep in rocks are limiled to very low Reynolds number flows so that inerta effeets may be neglected (e.g. Weijermars \& Schmeling 1486) This means that detor mation ceases instantaneously as soon as the driving force stops. It is therefore potentially possible to recover the orientation of palaeostress axes responsible for natu ral deformation patlerns firm field measurements of their finite stratn and rotation components, alter con firming that there has been fow at a constant stress
orientation (expressions 21 and $26 a-26 d$) Methods 10 recover the stran from natural fow markers are avail able and require only knowledge of the initial geom etries (ol fossils, pars ol lines, imbricated pebhles, etc ; ct Ramsay \& Huber 1483, Lisle 1488). However, the component of finite rotation can only be quantified if the intial ortentation ol such flow markers is known

At this point it seems appropriate to quole what has been lermed a general theorem (Hubbs et al. 1976, P 31): "Any homogeneous constant volume defor mation can be expressed as a pure shear together with a rigid body rolalon and a regid body translation". This theorem is commonly used todiscourage geologisis from attempling to determine whether a particular detor mation pattern in the field has been lormed by pure or simple shear "The only dillerences between such a pure shear and a simple shear are a rigid body rotation and a ngid body translation" (Hobbs ct al 147h, p 32).

Perhaps the ditficulty of distingushing between ro tational and non rotational deformation histories has heen over emphasized in the past. It has overlooked siluations where ductile rock has flowed adjacent to relatively rigid walls. A unit volume of rock with one lace adjacent to a stable ngid boundary will be unable to rotate that contact if stran compatibility rules are res.

Fig, It Numogram showing, the relalionship between the change in layer thickness (expressed as stretch [) and the molation (β) of a line initially orihogonal tu the telerence plane for various onentations, ξ, ol the pmeipal deviatone siress The angle β is $\varphi()^{\prime \prime}$ at lime 0 , when delormation begns. The vertical line tor $\boldsymbol{\xi}=45^{\circ}$ shows that there is no change in layer thickness lor simple shear 'The field io the left shows how layer thinning occurs if ξ is larger than 45° Note ihat, in pure shear, layer thinning, or thickening does not involve a change in β, and therefore pure shear plots along, the top line of the diagtam See also the definition sketch of Fig, 3 and expression (22)
pected. There are many situations in nature where this boundary condition may have been mannlained during the deformulion. For example, ductile shear zones be low fold nappes, orogenic belts adjacent to cratons and segments of lithospheric extension may all comprise ductilely deformed structures, at particular depihs, deforming between relatively rigid walls. The stretch of the bulk sirain ellipsord and its inclination with respect to thuse walls provides a potential measure of rotation which can be plotted in Fig. 9 to determine g. Alternatively, the rotation and change in length of a marker line initially orthogonal to the ngid walls of the deformed zone can be used to determine ξ from the plot of Fig. 10.

Example

The graph of Fig. 4 can be used to plot pairs of (R, θ) or $\left(S_{1}, \theta\right)$ measured in the field. It the deformation markers used were truly passive and have a good strann memory, these parrs cluster on the plot ol Fig. 9 and ihus provide an estimate lor ξ. In order to avoid discussions on the reliability of the strain memory of delormation patterns in natural rocks, I resort to a laboratory expenment. Figure 11 shows sketches of John Ramsay and Martin Huber on the side of a Plasticene block of high viscosity deformed by a siress of consistent, but unknown onentation. Plasticene has a pertect strain memory and is
unable to recover. The base of the block was lubricated with a low viscosity oil allowing free slip over a stable reference plane relative to an arbitrary pinline. The block was further confined between iwo plexiglass walls so that detormation remained planar. The images of both Ramsay and Huber were nicely round in undis-

Fig II Passive sirain markers (ımages ol John Ramsay and Martin Huber) on the side of a Plasticene block of high viscosity deformed by a plane stress field of unknown onentation The base of the block remanned slable throughoul the delormalion The finite stretch $S_{1}=1.14$ and the inclination of the greatest axis ol the stiain ellipsoid with respect to the base of the deformed block is $\theta=76^{\circ}$ 'These data are sufficient to uler from the nomogram of Fig, 9 that the major axis of stress causing the deformation was onented at 40° to the normal to the base of the block The same inclination of the siress axis can the delermined, using Fig IO, trom the tractional change in orthogonal thickness of 0.96 and the rotation of the edge of the block, which was initially at 90° to the reterence plane, and is now al $79^{\prime \prime}$
corled mode , and show nolared change in the detormed shate

This allows determinalion 10 be made of the finite strain and inclination of the stran ellipsom axes with respect to the hase of the deformed block 'The elliplicity of both laces is $R=13$ (corresponding to a stretch $\left.S_{1}=V / 13=114\right)$ and their inclination angle is $34^{\prime \prime}$ 'This finds a 5 value of 401 in Fig 4 The alternative method employs the tractional change in height of the block of 0.9 h and the rotation of the vertical edge of the block Irom 4010 to $75^{\prime \prime}$ Plotting these data in Fig. 10 also yields a 5 , value of 4()$^{\prime \prime}$ 'This means that the Plasticene block of Fig II must have been detormed by a siress held with its mapor pnocipal axis al $40^{\prime \prime}$ to the normal of the reference plane, ie the base of the Plasticene block

DISCUSSION

The theory developed here concerns delormation patterns tormed (1) in plane strain; (2) al steady state, (3) without volume change, and (4) adjacent to a rigid boundary The leasibility ol these assumplions will be discussed below.
(1) In two dimensional Hows, all displacement occurs in the plane of How, and there are no velocily com ponents perpendicular to this plane. This condition is likely to apply to fold helts, shear zones, nappe com plexes and diapinc nodges 'Three dimensional How fields, involving signiticant deviation trom plane strain, are responsible tor the emplacement of granite batho liths, mantled gneiss dumes and sall stocks Progressive deformation in three dimensional flows has been ana lysed by Ramberg (1975h)
(2) Steady state is assumed, but the magntude' of the' stress and the consequent Hlow rate' ne'ed mot remann constant Steady state is assumed here in the sense that the devtaturic stress remains at a constant angle with respect to the reterence plane. In geological fows lor which condition (1) ol plane stram applies, the major and minor axes of deviatonc stress will he in the plane of straining. Whether the stress axes rotate within the plane of deformatoon depends upon the nature ol the forces that drive the deformation. Most geological fows are in some way or other due to lithosphenc plate driving mechanisms. Reorientation of the regional stress axes on the time scale of tectonic episodes, say 10 Ma , is less likely to occur in view of the slow rate at which convective lorces reorganize (e g see references in Weipermars 14885) 'There remanns the possihility that the reference plane will rotate, even in stable stress fields Nonetheless, there are many stluations in nuture where rock is deforming in a duclile lashion adjacent lo relatively rigid walls.
(3) The delorming block is assumed to remain incom pressible in response to instantaneous stresses This usually holds tor rocks delorming al crustal depiths where ductile creep may occur, as any pore space will be closed due lo the high conhning pressures prevailing at such depths (say 7 km) The long-term volume
changes which may he caused by solutom transter and melamorphic processes in some rocks alsoare excluded Nole that the present theory will sill hold il the volume change is equal in all directions. This may he so in metamorphic volume change, but is certainly unlikely in solution Iransler 'The error introduced by applying the present theory torocks allected by such volume changes is difticult to predict.

The estimation of palaeosiress axes from stram measurements in natural rocks also is sensitive to the stran memory of the particular rock Stram memorien may be erased by static recrystallization or annealing 'This is mosi likely in rocks which resided for a long time at deep crustal levels after deformation Annealing, is least likely to occur in rock hrought relatively quickly to our vision by isostutic recovery and conlinuous erosion of the surface 'The contical time scale for such annealing, to occur will vary with rack type and has not vel been studied in sulficient detal to allow quantitative esti mates
(4) The boundary condition assumed in the present analysis is that the delorming, volume may slip treely over the stable wall rock relative to a fixed point (the houndary is a tault). In nature, the degree of slip at rock intertaces is controlled by a range of physical para meters 'These include confining pressure, water press ure, Iracture density and ambient temperature Byer lee's law in crustal strength profiles suggests that solid state slip by fictional glide will generally not occur at depths where rock may deform in a ductile lashom (e g, Goetze \& Evans 1474) The Iree slip condition therefore will be most nearly fulfilled in geological settings where the rock volume delorming in ductile flow is separated from relatively rigid wall rock by a thin zone of low viscosity rock. Bird (1984) has provided experimental suppori tor the idea that major lault zones, weathered by hydrothermal circulation, may have extremely low triclonal reststance In such cases the interlace may behave as a stretching lault (Means 1484, 1490) II slip is constrained, strain compatibility problems will limit the mode ol detormation to simple shear with various amounts of volume change as discussed in detall by Ramsay \& Graham (1470) (ci' Ramsay \& Huber 1483, P 47, 1487)

CONCLUSIONS

Palaeostress magnitude may be recovered from grain size studies of quartz labncs (cl. Etherngee \& Wilkie 1981) A complementary method lur special conditions, first outlined here, now also allows potential recovery of the orientation of the principal axes of palaeostress Knowledge of the flow field provides a sound basis for discussing the significance of the kinematic vorticity number, vanous modes of progressive deformation and how these are controlled by the stress unentation
'The deformation tensor, obtained by solving difleren tial equations connected with the rate of displacement or velocity gradient tensor, is expressed in time
dependent terms comprising only the normal and thear components of the strain rate tensor (expression (0) Mohr's equations of stress can be used to link the sirain rales to the major principal stress This denvation yields a lime-dependent delormation tensor which is expressed in lerms of the dynamic viscosity and major deviatoric stress (magnitude and onentation with respect to a reference plane), (expressions 15 and $16 a-16 d$)

The deformation tensor can be non dimensionalized by rewriting ats components in terms only of the onen tation, ξ, of the major axis of deviatonc stress, the stretch, S_{1}, and rotation component, θ, of deformation (expression 26a-2bd). Estimates of the rotation and stretch ol finite strain ellipsolds in nature are sufficient to identify the onentation ol the axes ol palaeostress from a nomogram first introduced here (Fig. 9) Alternatively, the direction of palaeosiress axes can be determined from the rolation and change in length of a marker line initially normal to the reference plane (Fig. 10)

Finally, the theory developed here should be applied with care. Although fields of inhomogeneous defor mation may be partitioned into smaller domains of approximately homogeneous deformation (Cobbold 1477, 1979, 1980, Cobbold \& Percevault 1983, Cutler \& Cobbold 1485), such domains will contınuously be reor ientated with respect to the principal stress directions. In such cases, recovery of the palaeostress trajecturies could still be possible by first reconstructing the flow lines leading to the particular pattern of inhomogeneous deformation concerned

Acknowledgements-'The idea of this paper was born dunng a refiesher course in struclural geology taught by the author to senior held geologists at the Geological Survey ol Sweden (Uppsala, May 1989) "How can we recover the onentation of the tectonic stress held", was one ol those questions which kepl recurning 'This particular question, which has survived several generations ol geologisis and decades of much cniticized speculation, indeed lest al the heari ul many tectonic problems 'This manuscripl matured by peneiralive dis cussons with Win Means, Hans Ramberg and Johni Ramsay, and cnitical editonal guidance by Peter Hudleston and C'hns 'Talbur Programming, dratwork and pholographs were all done by the aulhor 'This study has been performed whilsi holding a posi docioral travel grani from the Swedish Nalural Scence Research Council

REFERENCES

Bentley, B J \& Leal, L. $\mathbf{G} 19 \mathrm{Kh}$. A compuler conirolled tour roll mill lur investigalions ol particle and drop dynamics in iwn dimensional linear shear flows. J Flund Mech 167, 214-241)
Bird, P 1984 Hydralion phase diagrams and tricion ol monimonilion ite under laboratory and geological conditions, with implicalions lor shale compaction, slope instability, and strength ol lauli gouge Tectonophysics 107, 235-201).
Bobyarchick, A R 1946 The emgenvalues of sleady flow in Mohr space Tectonophysws 122, 3-51.
Cobbold, P R 1977 Compalihility equations and the integratoon ol finite sirains in Iwo dimenswons Tectonophysics 39, 'T'I-'T'6
Cobbold, P R 1474 Removal ol hnite delormation using sirain trapectories J Struct Geol 1, 67-72
Cobbold, P R 148) Compalitility of iwo-dimensional sirams and rolations along strain trapectones IStruct Girol 2, 174-382
Cobbold, P R \& Peicevauli, M N 1483 Spatial iniegration of slrams using finite elements J Strucr Geol 5, 299-31)s
Cutler, J. M \& Cobbold, P R 1485 A geometric approach of two dimensional finite strain compatibility, interpretation and review J Struct Gcol 7, 727-734

Etheridge, M A \& Wilkie, I G Iuki Anasbesment ol dyriamically rectusallized prain size as a palaropiezometre in quarz hearing, mylonile zones Tecfomuphysicy 18, 474-408
Flinm, [) 14 ? ${ }^{2}$ ()n lolding, during three dimensminal progressive delormation (1) / getol Sor Lond 118, 384-d3
Fuller, \bar{G} G Leal, L G 1481 Flow birelingence ol concentialed polymer solutions in two dimensural flows J Folvm Sa (Folvm Fhus. E.d 19, 467-487
 Englewood Cliths, New Jersey
Giesekus, H 14tis Siromungen mil konstantem Geschwindigkelts gradienten und dee Bewegung, von damn suspendierter Terlchen Teal II Ebene Siromungen und eine expenmentelle Arordnung, zu Ihrer Realisierung, Rheologica Acta 2, 112-122
Ghosh, S K 1487 Measure ol non coaxality J Struct Ged 9, III113
Guelze, © Evans, B 1474 Siress and temperature in the bending, luhosphere as constaaned by expenmental rock mechamion Gen phes, J R astr. Soc 59, 4t,3-478
Hobbs, B E , Means, W [). \& Willams, P F 197n An (luthne of Structural Geology' Wiley, New York
Jaeger, J C I4to Elashoty, Fracture' and Flow' Chapman \& Hall, London
Kuenen, P H lath Value al expenmenis in gevolagy Geal Mifnh 44, 22-3n
Lisle, R J 1488 Geological Strain Anulvisu-A Manual lor the R_{1} / ϕ Meihod Pergamon Press, Oxlord
Lister, Ci S. \& Williams, P. F 148.3 The partitioning ol delormation in flowing rock masses Tectonophesics 92, 1-33
Malvem, \mathbf{L} E 1464 Introduction to the Mechanics of a Connnuous Medium (Ist edn) Prenitce Hall, Englewond Cliths, New Jersey
Masori, S G 1477 Orthokinelic pheroumena in disperse systems, J Collord Interface sict 58, 275-28)
McKenzie, [) P 1474 Finite delormalion during, Fuid fow Seophys $J R$ astr S So 59, 6K4-714
Means, W D 147t, Stress and Siruin Spmngei, New York

Means, W. D 1441 One dimensional kinematuch ol siretiching laulis J Strut Geol 12, 267-272
Means, W D, Hobbs, B E , Lister, G is \& Willams, P F 1480 Vorictiy and non cosaxiality in progiessive delormalion $/$ Strucl Geol 2, 171-178
Passchier, C: W 148n Flow in natural shear zonew the consequences ol spinning flow regimes Eurth Flunet Sul Le'f 77, 71-80
Passchier, C W 1487 Elficient use of the velocily gradients tensor in How modelling 'Te't fonophivics 1.36 , 149-163
Passchier, C' W 148K Analysis in delormation paths in shear zones Geol Rusch 77, 119-318
Passchier, ${ }^{-1}$ W IUM) A Mohr carde construction lon plot the siretch history ol malerial lines J Siruct firol $12,413-514$
PhHner, () A \& Ramsay, J O 1982 Constraintsongeolugcal stran rates argumenis from finite strain states ol naturally deformed moks J ge'ophes Res 87, 111-321
Ramberg, H |474a Parlicle palhs, displacement and progressive strain applaable to rocks Tectonophestes 28, 1-17 (see also Ram berg's (1486) conection in Tectonophysics 121, 156)
Ramberg, H l474h Superposition of homogeneous strain and pro gressive delomation in rocks Bull geool Insin l/mi' l/ppsala 6 , 39-n7
Ramberg, H l4st, Parlicle palhs, displacement and progressive strain applicable lorocks-a wonecion Tectonophusics 121 , 34
Ramsay, J G 14 ti7 Folding und Fracturing of Recks McGiaw Hill, New York
Ramsay, J G \& Giaham, R H 1470 Siram vartation in shear bells C'an $/$ Earth Sa 7, 7htr-RIJ)
Ramsay, J G \& Huber, M. I 1983 The Tirhntene's of Modern Structural Getologn, Volume I Siran Analysis Academic Piess, Lindon
Ramsay, J G \& Huber, M I 1487 The Terchnques of Modern Structural Grologg, Volume' 2 Folds and Fractures Academic Press, London
'Thompson, W \& 'T'all, F' Gi 1874 Pnnciple's of Mechuncs and Livnumics, F'arl I (puperback versumpublished 19h2) Divei, New York
Trilton, D J 1488 Physical Filund Dynamics (2nd edn) Clarendon, Oxlord.
'Truesdell, C^{2} 19h3 'Two measures al vorticity J Ruthonal Mech Anal 2, 17ヶ217
Truesdell, C I $4 \uparrow 4$ The Kinematics of Vorncity Indiana Universily Press, Bloumingion, Indiana
 New York
'Truesdell, !.: \& Toupin, R A lufil) Thie clansimal held thenites, In The Emplopiuedua of Fhyw (edited hy Flugge, S) Spromer Herdelherg, 22t-741
Weifermars, R lust Polydimelhylsilexanes hiw detined lor experi menis in Huid dynumics Appl Fhys Left 48 , $1104-111$
Weifermars, R l 188 sa Cönvecturn expenments in high Frandil num ber silhomes, Part: Detomation, displacement and mising in the Earh's manule Tectomophysers 154, 47-121
Weplermars, R luskh Pinpressive delormallon in how Reynuild number How pasta alalling cylinder Am J Phys 56, 4 4 - 440
Werpermars, R. \& Schmeling, H luse Scaling of Newlomian and nom Newtonian fluid dynamiey withoul ineria tor quanliative modeling of rock thow due to gravity (including the concept ol theological similarily) Fhys Earth \& Flanet Imerters 4.3, 3/b-130

APPENDIX A

MATHEMATICAL DESCRIPTION OF DEFORMATION

The changing, pusilion ol any matenal body in flow space can be expressed an a relative displacement ol malerial points. It an Eulendn descmption is adupled, the Carlestan posilion ($1, y, 2$) ol any porni in displaced sale had co.ordinales (x_{11}, v_{0}, m_{1}) belore displacement The rale of displacement (1,) ol particles x, in Eulenari space ($X \mathcal{Y}^{\prime} Z$) can be descrined by the rale al displacement equalom

$$
\begin{equation*}
i_{1}=L_{1}, r_{1} \tag{AI}
\end{equation*}
$$

The rate-ol displacement or velocily giadient tensor $L_{i \prime}\left(=d v_{1} / i x_{j}\right)$ can be decomposed into a symmetre (stretching, wrain rals, rale ol deformalion or velocily hliain) tensor [), and an anlisymmetne (vorti cily, spin or rotation tale) lensor $W_{1,}$ (Malvem 1464, p 147)

$$
\begin{equation*}
L_{11}=D_{11}+W_{11} \tag{A2}
\end{equation*}
$$

'The siretching, lensor implictlly descones the accumulation tate ol incremental stran or strain rate The vorlicily tensor accounts for the rotalion rate ol the ellipsord's pnncipal axes
In the case of homopeneous delormalion, the stretching and vinti caly tensors will comprise only linear terms

$$
\begin{gather*}
{\left[I_{11}=(1 / 2)\left|\frac{d v_{1}}{d r_{1}}+\frac{d w_{1}}{d r_{1}}\right|=\left[\begin{array}{ccc}
i_{11} & r_{12} / 2 & r_{1} \sqrt{2} \\
d_{1} / 2 & c_{2} & r_{2} / 2 \\
r_{1} / 2 & r_{2} / 2 & r_{3}
\end{array}\right]\right.} \tag{A3}\\
W_{11}=(1 / 2)\left|\frac{d r_{1}}{d r_{1}}-\frac{d w_{1}}{d r_{1}}\right|=\left[\begin{array}{ccc}
11 & u_{1} / 2 & -u_{1} / 2 \\
-u_{1} / 2 & 1 & u_{1} / 2 \\
u_{2} / 2 & -u_{1} / 2 & 1
\end{array}\right], \tag{A4}
\end{gather*}
$$

with voricily veclar components a a_{k}
The paricle s starled moving due lo a devialonc stress causing creep at a rate which is conirolled solely by the internal Inction or dynamic viscosily η ol the matenal volume.

$$
\begin{equation*}
T_{11}=2 \eta_{7}\left[D_{11},\right. \tag{A6}
\end{equation*}
$$

with devialunce stress tensor $T_{1,}$ and hydrostatice stress tenson $P_{11}=$ $-P \delta_{1}=-1 / 20_{k h} \delta_{y}$, laking, $i_{11}=1$ lor $1=1$ and $i_{11}=11$ lor $1 \neq 1$ 'The boundary condision ol plane sitan requites that $\boldsymbol{o}_{2}=P$ which imples $n_{2}=(1 / 2)\left(n_{1}+n_{1}\right)$, so that

$$
\begin{align*}
& r_{1}=o_{1}-o_{2}=(1 / 2)\left(\sigma_{1}-a_{1}\right) \\
& r_{2}=(1 \tag{Ah}\\
& r_{1}=\sigma_{3}-o_{2}=(1 / 2)\left(\sigma_{3}-\sigma_{1}\right)
\end{align*}
$$

This assumes that the delormation is incompressible, 1 e there is no volume change sol that $r_{1}=-r_{\text {, }}$, The ditherence in sigm between r_{1} and $r_{\text {a }}$ is accounted for hy the apposite senses of the deviatonc alress anows in Fig 1

The position ol any paricte al a particular lime f can be lound by integrating the set al ditterential equations (AI) This yields the deformation tensor F_{1}, which is equal to the sum ol the Kronecker's malnk δ_{11} and the displacement gradient lensor (dul/ r_{1}), also) lermed

 expressed in terman ar iflationship belwern the rate al displacement tensor L_{11} and the delormalum tenowr F_{11} A shame $L_{-1 /}$ and F_{14}, wre given hy the lollowing matnes

$$
\begin{align*}
& L_{11}=\left[\begin{array}{lll}
d & 1 & 1 \\
0 & 0 & 0 \\
1 & 11 & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
& \\
1 & d
\end{array}\right] \tag{A7}\\
& F_{11}=\left[\begin{array}{lll}
A & 11 & B \\
1 & 0 & 0 \\
C & 11 & L
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
1 & 0
\end{array}\right] \tag{AB}
\end{align*}
$$

'The componemis $A-[$ ' of the delormalion matnx may be recovered trom componenis a-d al the displacement rate matra, hul iria lashon much simpler than given bv Ramberg (147 ha,h) According, Io Ram herp (1976h, equalion 41)

$$
\begin{align*}
A= & \left|\left(k_{1}-u\right) /\left(k_{2}-k_{1}\right)\right| \exp \left(k_{1}\right) \\
& \left.-\left|\left(k_{1}-u\right) /\left(k_{2}-k_{1}\right)\right| \exp \left(k_{2}\right)\right) \tag{4}\\
B= & \left|(-b)\left(k_{2}-k_{1}\right)\right|\left|\exp \left(k_{1}\right)-\exp \left(k_{2} f\right)\right| \\
C= & \left|\left(k_{1}-u\right)\left(k_{2}-u\right) /\left(b k_{2}-b k_{1}\right)\right| \mid \exp \left(k_{1}\right)-\exp \left(k_{2}() \mid\right. \\
D= & \left|\left(k_{2}-a\right) /\left(k_{2}-k_{1}\right)\right| \exp \left(k_{2} t\right)-\mid\left(k_{1}\right. \\
& -u) /\left(k_{2}-k_{1}\right) \mid \exp \left(k_{1}\right) \tag{A!?}
\end{align*}
$$

The dummy consiarils k_{1} and $k_{\text {: }}$ are (Ramberg, [47hh, rquation 34)

$$
\begin{align*}
& k_{1}=(1 / 2)\left|(u+d)+v^{\prime}\right|(a-d)^{2}+4 b c \| \tag{All}\\
& k_{2}=(1 / 2)\left|(a+d)-v^{\prime}\right|(a-d)^{2}+4 b c^{\prime} \|
\end{align*}
$$

This solulion of F_{11} is only valid il the square mol contained in k_{1} and k_{2} is real, ie $\left|(a-d)^{2}+4 b c\right| \geq 0$. which corresponds in cabeb, ol norn oscillatory delomalion II $\left|(a-d)^{2}+4 h a\right|$ - 0 , this negative square root gives rise formplex eigenvalues, and altemative solutions valid lor closed particle movement paths are given by Ramberg (1476h) However, il lollows Iromexpressun (4 ($)$ that $c=0$ in any plane, non oscillatury detormaloon (but only lor the relerence frame used here), so that equatoms ($A \mid A$) and $(A \mid A)$ yield $k_{1}=0$ and $k_{2}=d$ Subsil iulion ol these values in equations ($A 4$) -($A \mid 2$) gives the smplithed solution for the compuneris ol the detormalion malna

$$
\begin{align*}
& A=\exp (a t) \\
& B=|h /(a-d)||\exp (a t)-\exp (d t)| \\
& C=\| \\
& {[\prime=\exp (d t)}
\end{align*}
$$

If is worth recalling, that in plane delormalion $d=-a$, and exp (at) $-\exp (-u t)=!$ sinh (af) The streamline pattems for W_{k} s lying belween II and I may be synthesized by altemaling superposed inctements ol streamlines, lor pure and :mmple shear flow (see Ram berg, 14743, hg, 2)

Analogous in the rale ol diaplacement tensom, the Jacobian dis placement malnx, $I_{1,}$, can he separated-hut only for inhnitesmal deformalions-into the sum of a s,ymmetnc matnx (E_{14}) and skew symmelnc malna (Ω_{11}) (Malvern 14h4, p 12h)

$$
I_{u}=E_{11}+\|_{11}
$$

The symmetnc malnx describes the stram component of the de formation and is theretore called the sirain matnx (Malvern 1464, [124)

$$
E_{11}=(I / 2)\left|\frac{d u_{1}}{d r_{1}}+\frac{d u_{1}}{d r_{1}}\right|=\left[\begin{array}{ccc}
r_{1} 11 & r_{1} / 2 & r_{1} / 2 \tag{1}\\
r_{1} / 2 & e_{2} & r_{1} / 2 \\
1 / 3 / 2 & r_{12} / 2 & t_{1}
\end{array}\right]
$$

The rolation component ol any delomalion can be expressed by the rolalon matne (Mulvem 14ht, F 1 11)

$$
U_{11}=(\mathrm{l} / 2)\left|\begin{array}{cc}
\left.\frac{d m_{1}}{m_{1}}-\frac{d u_{1}}{m_{1}} \right\rvert\,
\end{array}\right|=\left[\begin{array}{ccc}
11 & w_{1} / 2 & -w_{1} / 2 \\
-w_{1} / 2 & 11 & m_{1} / 2 \\
w_{2} / 2 & -w_{1} / 2 & 1
\end{array}\right]
$$

witlipuncipal rolalone im: 'The ahove decompositoon ol the displace
 need la le taken into arcount for large delormaloms However, Phllntis \& Rumbay ($\mid 4 K_{2}$) have shown how hnite slrams may he determined hy slepwise superposilion ol small incrementsol etrain and rutaton 'Ther hole stramis displayed in Figs iand to were comerruited from the particle movemernt paths atter integration of the rate al displacement equalions, which accounts lor the non linearity ol large delormalomes li is worth noling that Ramsiay \& Huber (198 (i) some limes urid the lermistan matrix for whal is, in ellect, the deformalion matrix $F_{1,}$, since their malnx includes the malom component al detormation

APPENDIX B

SOFT SUPPORT FOR HARD ROCK DEFORMATION

A compuler program has been wnilen to calculate and display the progressive delormation of a unit volume ol rock in duclile creep 'The uril volume is homogeneausly deformed, in plane isachonce ar ain All parameters relevanil to the progrensive delomalion hislory are quanli hed hy the programme and may be pnnted il so required 'The delormadion alages are visualized by initally square and circ ular alran markers (e g. Fig, h) The movement paths ol particular particles also dan be displayed (eg Fig d) 'The rack may he eilher isolropic or ortholropic

The graphical display ol the strain markers has been progiammed making ethecent use ol expressions (15)-(22) For example, the image of the strain ellipse is oblamed according to the lollowing, prosedure The axtal lengiths ol the major and minur axen ol the ellipse, expiessed as stretches S_{1} and S_{3}, respectively, are given hy equalions (14) and (19b), and (20a) and (20h) The inclination θ of the major axis with respect lo the relerence plane is goven by expression (21) The co ordinates of the stram ellipse (r, i) can first be oblamed lor an ellipse tentred about the angin with its axes parallel to the reference Irame

$$
\begin{align*}
& x=S_{1} \cos \phi \tag{BI}\\
& z=S_{1} \sin \phi \tag{B2}
\end{align*}
$$

with durnmy indes $\phi=1+3$ tor $0^{\prime \prime}$ The conordinates of the ellipse are

$$
\begin{align*}
& \therefore=r \text { rim } H+\therefore \text { cur, } H \tag{B1}
\end{align*}
$$

 whtaned thy transaling the co ordinalte: wo that the rlliper remans irntred in the delorming black
'The imapes of recoprocal stramate whamed, imo hy direct valcu
 al L, is smalar 10 progereshate stram due 10 a stress ortented al
 malom sages ate dhlamed hy laking the mirtir images aboul the 7 2×14

All images are scaled automalically so that they remain within thi held of view of the screen 'This is achoeved by scaling all co ordinates in propurion tothe maximum thile sirain pussible within the particular lime ecale, iand under the bress/vistositve conditoms specined by the user Reciall ihal values lor recks delorming in the lithosphere lypically

 viscobily ol crubial ricks. 'The degree ol orithornpy may be expresued by the anisolropy lacior, which fanges from I for motiopic lo we for "Wrongly orhoiropic rocks (Werpermars in preparulion)

The sothware was developed on a 24 kp 'Tishiba ' TIMM) Laplop expanded wilh 7 7h8 kbyles ballery buttered hard RAM 'The hnal images al progressive deformalion were displayed in screen mode 4 (tot() M 340) pixels), using an IBM PS2 computer Colours specithed in the algonthms for the line drawings are hlue (No I), grey (No k), red (N o 4) and green ($N(1$ 2), set agamst a black background (No 1)

The pholographs of Figs, 4 and are laken lam the 10 inch screen al an EIZ(.) antils monilor assembled with MD) Bll graphic card using ari Olympus OM IO The camera was mounled with 60 mm macro zoum lens (1 3 亿), and a lripod and remote conirol were used Io Irigger stable aulumalic expusure while compensaling tor the dark background by selling the hlmspeed al higher values 'The detals in the images of Figs 4 and 4 required use ol Kodak EE'TAR 24 him lor supert resolulion, setling himspeed al I(K)ASA Finnts were made with driaulimatic develuper selling light intenaty al fluxes h (Fig , h) and $h(F 19,4)$

The sotiware, laking up only to ktyles ol dink space and written in GWBASIC' (8 I khyles), can the run on any IBM compatible PC or Lapiop supported by DOSS Most ol the graphies can be displayed nuthicenily clearly the hardware includes a COA card Optimum use of the graphical oplions tan be made il the system is assembled with an EGA, VGA or Hercules graphics card lo support colour display Inquiries aboul the purchase of copies of the sollware logether with detaled dicumentation may be oblaned from the author

