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Abstract—The concepl ol progressive ductile delormation has previously been discussed mainly in kinemalie
terms Liltle attenhion has been paid (o the pancipal stresses that control the lormation ol ductile delormation
patterns Many detormation patterns of rocks may have been created ina siress held ol stable onentation An
equation denved here directly hinks the onentation ol the major axis of deviatone stress to the stretch and
rolation components ol plane 1sochone delormation inisotropic tocks Estimations of rotation and stretch of
hinite strann ellipsonds may theretore aid the recovery ot palaeostress axes using a nomogram introduced here
The inchination ol the major pnncipal deviatone stress axis with respect (o a relerence plane controls both the
particle movement paths and mode ol progressive deformation The deformation tensor, obtained by inlegrating,
the rate of displacement or veloeity gradient equations, 1s first expressed in time dependent lerms compnsing,
only the normal and shear components of the stram rate tensor Mohr's equations of stress can then be used 10
link strain tates (o the major panapal stress responsible for them The rate of progressive deformation s
determined by the rheology of the detorming rocks and the magnitude ol the deviatone stress This dervation
vields a ime dependent detormation tensor which 1s expressed in terms of the dynamic viscosily and (he
magnitude and onentation of the major deviatonc stress with respect (o a relerence plane The sigmhcance of this
delormation (ensor s tllustrated by lorward modelling using computer graphics These allow the progressive
deformation ol a unit volume of rock 0 response 10 deviatonie stresses ol vanous stable onentations 1o be
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visualized

INTRODUCTION

StruUCTURAL geologists have developed techniques to
map, methods to display and jargon to descnibe, the
geometry of delormation patterns observed in rocks
The structural features ot particular terrams are some
tumes used 10 reconstruct their kmematic or tectonic
history However, this traditional, descnptive approach
ol structural geology does not address [undamental
quesuons concerning the dynamics of deformation. For
example, “Never talk about stresses, all you see in rocks
18 a state ol hnite strain which may result from any
deformation history”, 1s a common statement repeat
edly emphasized by the community of structural geolo
gists.

And yet, many geologists wonder: Why 1s the geom
etry and scale of folds, boudins, mullions and shear
zones so vanable? Why do (hese structures occur at all?
Field geologists therefore commonly resort to mental
models, invoking mechamisms that could have led to the
structures observed in the field These models usually
prompt allegations about the onenlation ol the principal
stresses. Such mind experiments are often a drastic
simplification as they extrapolate trom famihiar dimen
sions and condense the lactor ol time while animating
the trozen movements found in rock structures (cf
Kuenen 1963), The accuracy of mental models could
therelore benefil from investigating and quanufying the
relationship belween stress and strain in elementary
models 1t 15 a task of modern structural geology Lo
provide this background knowledge.

The relationship between stress and strain 1s complex
because finite strain can only be determined by time
integration when the vorticities and strain rates are

known This work shows how both the low geomelry
and mode ol progressive detormation are entirely con
trolled by the inchnation ol the pnncipal deviatornc
stress axis relative to a stable reference plane hxed to a
physical boundary of the deforming rock volume Until
now, this relationship between mode of delormation
and onentation of the deviatone stress had only been
recogmized for two specific cases. These are progressive
pure shear and simple shear, tor which the prncipal
deviatone stress is perpendicular to, and at 45° to,
respeclively, a ixed reference plane in the matenal The
deformation tensor introduced here allows determi
nation of progressive deformation sequences lor any
stable ornentation of the stress axes within the plane ol
flow Additionally, the rate of accumulation of finite
strain can be predicted knowing the magnitude of the
vorticity and strain rate as these are controlled by the
magnitude of the stress and the eflective viscosity of the
system

Progressive deformation ol circular markers has pre
viously been visualized by Phiffner & Ramsay (1982)
who oblained their resulls 1n an instructive approach
superposing small increments of strain and rotation
Ramberg’s (1975a,b) carlier treatment of progressive
delformation was less illustrative but theoretically more
sophisticated because 1t discussed the development of
finite strain in terms of strain rate and rotation rate, both
at steady state The type ol progressive delormation and
the associated pattern of particle movement paths
(streamlines) appeared Lo be cnitically dependent on the
relative magnitude ol vorticity and strain rate (Ramberg
1975a,b). This was 1n agreement with previous develop
ments in Auid mechanics where similar streamline pat
terns were calculated by integrating the velocity gradient
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tensor for arburary ratios of vorticity and strain rate
(Gresekus 1962) Consequently, finite deformation s
predictable but only 1l the history ol stramn rate und
vorticity contributions 1s fully known, and preferably
these are al steady state

Two distinct classes ot progressive deformation in
planar lows were implied in Ramberg’s (1975a,b) ana
lyses, causing pulsating and non pulsating strains Intro
duction of Truesdell’s (1953) kKinematic vorticily number
(W) into geological literature allowed indexing ot de
formations, where fintfe strain oscillates or pulsates
(1« Wy=o) and accumulates  monolonically
(0= W, = 1), respectively (Means eral. 198()) McKen
zie (1979) had previously expressed the detormation
tensor in terms ol vorticity and strain rate, and indicated
tor which ratios oscillatory and non oscillatory strains
occur. Oscillatory progressive strains were also included
in Pfifiner & Ramsay (1982, ¢/ Ramsay & Huber 1983),
but without reference to the kinemalic vorticily number
It is worth noting that Giesekus (1962) also used a
parameler p—identical 1o the Kinematic vorticity
number —for distinguishing the closed and hyperbolic
fow paths, which Ramberg (1975a,b) later connected (0
pulsating and non pulsaling strains.

The kinematic vorticity number 1s now increasingly
used as a measure for non-coavality ol progressive
detormation (cl. Ghosh 1987). But this 18 nol a unique
measure tor charactenzing the progressive deformation
history. This 1s because 1t characterizes only the stream
line pattern. It includes no information concerning the
boundary conditions and initial shape and onentation of
the detorming volume with respect to that Aow pattern
Ditlerent progressive deformations leading to thinning
and thickening of the same layer may have similar W, s
(see later). The kinematic vorticity number 18 theretore
an incomplete measure of progressive deformation. W,
is still useful to distinguish pulsating and non-pulsating
strains, but the specific mode of non osaillatory strain 1s
better characterized by the orientation of the deviatone
stress axes with respect (o a particular reference plane

Current ambiguities about the role of stress and the
importance ol the kinemalic vorticity number could be

———

pure rotation
L=-1

simple shear
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resolved by invoking basic concepts of Auid mechanies
and continuum mechanies Although structural geology
15 a practical, field onented science, 1t may be worth
while to start trom basic prineiples it this promises a
better understanding of our held data. The discussion
below theretore introduces the stream function tor
homogeneous plane deformaton and demonstrates how
it charactenizes the pattern ol particle movement paths
The Aow field may also be characterized by a non
dimensional purameter & conlamed in the parhicular
stream function denived below. However, the mode of
progresstve deformation depends upon the boundary
condiions (viz. stress orientation) and theretore specih
cation ot the mode of Row 1s insutficient to characternize
the detormation history

STREAM FUNCTION OF HOMOGENEOUS
PLANE STRAIN

Like previous studies, this investigation of the system
atics ot progressive deformation 1s confined to ductile
detormation patterns lormed (1) in plane strain, (2) at
steady-state and (3) without volume change Addition
ally, the reference volumes considered are at a scale
small enough 1o correspond to homogeneous detor
mation The validity of these assumptions for creeping
rocks will be retrospectively discussed in a later section

The assumption of plane strain at steady state without
volume change implies that the streamlines or particle
movement paths controlling the deformation will re
matn within the plane containing the long and short axes
of the strain ellipsoid. The entire suite ot How patlerns
possible 1n two dimensional Rows giving homogeneous
detormation structures s illustrated in Fig 1. These Aow
patterns can be charactenized by the following ex

pression of velocity components 1{v,y,2) (¢I Mason
1977).
r= (1a)
r, =1 (1bh)
v,=On, (lc)

pure sheat

'fJ:O 'f.:o1

'F'lg I Speafic examples of two dimensional laminar flows represented by (a) sireamlines and (b) velocity components
The flows can be characlenzed by the dimensionless parameler ¢, varying trom - | (ngid body rotalion) (o + 1 (pure shear)
Alter Mason (1977, hg 1)
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where {18 a dimensionless scaling parameter varyimg

between | and - I, and y 15 the rate of shear Familar
cases of progressive delormation occur for § = - | (pure
rotation and no stramn), & = 0 (simple shear) and & = |
(pure shear) The ellipticity ol oscilllatory streamhine
patlerns, expressed as the ratio of the short 1o the long
axis, 1s given by the square root ot = ¢ (¢t Fuller & Leul
1981, equation 15)

Itis more practical (o express the low held of Fig 11n
terms ot a stream function This, by definition, auto
matically satishes the conditions of continuity and the
lorce balance equation of Navier-Stokes. The stream
function therelore 1s a solution of the biharmonic func
tion lap lap W =0, which is only equal 10 zero for
incompressible flows as assumed here The stream func
tion cannot be determined from this general equation
(as 15 somelimes suggested in geological literature) be
cause the number of solutions is nfinite. A stream
function descnbing the low spectrum for homogeneous
plane strain 1s obtained here by making proper use of ils
definition as v, = o¥/dzand v, = -d¥/av It can simply
be recovered by integrating the velocity field equations:

W

’ (Wlo)dy + | (aW/az)dz + ¢

’\', : - ’v‘,dx + 0. (2)

The tollowing stream function is obtained by inte-
gration of expression (2), using the velocity field
equations (la)-(1c) and dropping the integration con-
stant ¢ using the conditon ¥ =0 [m’ s '] at
(v.2) = (0,0y

W= (2N - ) (3)
Streamlines similar to those 1n Fig | can be mapped
accurately by equating ¥ 1o a constant volumetric flow
rate [m“ ™', with unit vector in the y direction], using
fixed values ol ¢ and an arbitrary . Expression (3) 1s
only valid tor the particular onentation ol the co
ordinate axes shown in Fig. 1. Although ¢ 1s by definition
related to (his particular orientation of the reference
trame, 1t may sull be used 1o charucterize streamline

patterns in peneral because co ordinate systems are
arbitrary

KINEMATIC VORTICITY NUMBER

Flowlines such as outlined in Fig 1 can be used to
predict patterns of progressive deformation ansing alter
the insertion ol passive delormation markers in such
flows. Particle paths, streamlines, Aowlines and streak
hines will all be the sume for the steady-state low Rey
nolds number flows studied here (cf. Tntton 1988). Flow
markers will therefore delorm by displacement along,
the streamlines Figure 2 1llustrates qualitative examples
of progressive detormation for a unit square by stream
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line patternsior g = 1,0.2,0, -0.1, -0 3, -0 6and - |
1o 18 important to reahize that the progressive delor
mation of the square is not only determined by the
streamline pattern, but also by its imtial onientation with
respect Lo the streamlines

Current geoscience hterature usually relers 1o the
kinematic vorticily number W, ot progressive delor
mation (Means ¢f al. 1980) This onginates trom a
particular convention for decomposition ol the velocity
gradient tensor (Truesdell 1953, 1954, 1965, Truesdell &
Toupin 1960). This non dimensional number character
izes the relative importance of the principal strain rates
(¢,) and vorticity (w,) denived trom the velocity gradient
tensor L, of steady state flows (Truesdell 1953, p 175,
1954, p 107)

Wi

Wy = — |f 3 (da
YT A+ D" )
where  the  magnitude of the voricity  vector

[W| = (0] + @} + w)"?. Note that the kinematic vorti-
city number as written here contains the principal strain
rates and not the normal strain rate components ol the
strain rate tensor (see later).

The kinematic vorticity number for a general (wo
dimensional flow 1s less complex than in expression (4a).
This is because the unchanged intermediate streteh axis
(§;) in any plane detormation always remains perpen-
dicular o the plane of flow The vorticity vector of plane
(rotational) strains also will remain consistently perpen
dicular to the plane of low. Consequently, any 1sochornic
plane strain will have wy = 0, w, # 0, wy = 0, ¢, = - ¢,
¢, =0, ¢y = —¢, assuming a convenient choice ol the
co ordinate axes Subslituting these values in expression
(4a) gives the kinematic vorticity number for a general
two dimensional low:

W, = |lool[26] + (=e DY = |wal2e,|  (4b)
It 1s worth noting that the relative magnitude of strain
rate and vorticity may be visualized in Mohr diagrams
(ct Lister & Williams 1983, Passchier 1986, 1987, 1988,
1990)

Perhaps the most powerful property ol the kKinematic
vorticity number 1s that it characterizes the geometry of
particle movement paths (cI Wenermars 1988b, fig 5).
The geomelry ol two-dimensional flow patterns is simi
lar lor all pairs ol (¢, @,) which give the same kinematic
vorlicity number. It is therefore relevant (o clarity the
relationship between the kinematic vorticity number,
Wy, stream function, ¥, and scaling parameter, .

The relationship between W and W is straightforward
since the magnitudes of ¢, and w, (or w,) are imphed in
¥ Components of the strain rate tensor can be obtained
from the expressions’

6, = dv,lox = a*W/oxa: (5a)

and

= (12)[av,/dz + ov, /o] = [a*W/az" — o™ Wian?).
(5b)

[
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Examples ol homogeneous progressive plane detormation ol a passive strain marker by the (ollowing particle
movement paths (aber Wenermars 1988b, fig. 6). (a) pure shear (, = |, W, = 0), (b) non oscillalory flow with components
ol pure and simple shear superposed (& = 02, W, = 0 7), (¢) simple shear (¢ = 0, W, = 1), (d) oscillatory shear (¢ = -0 [,
W, = 12), (e) oscillatory shear (¢ = -0, W, =1 7), (1) oscillatory shear (§ = ~06, W, = Vd), and (g) ngd hody

Fig 2

rotalion (¢, = =1, W, = @)
The vorticity field 1s given by curl v or the curl vector: w, 0
w, dv Jaz = v Joy a'),. = —(c:i“,‘l’/("h'J + Hzll’/ﬁz“) . (6b)
w,|=curly = | aviax ~ av iz |. (6a) w, 0
w, dv oy — dv Jox

The kinematic vorticity number ol expression (4b) can

now be wrilten in terms of the siream lunction, using
(5a), (5b) and (6b):

Recall that v, = oW/az, v, = Qand v, = —dW¥/dx, so that

expression (6a) may be simphfied into-
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W, - '_’i“"l‘"i + .fi'\l'/.a\f (7a)

Wiz - o Wlav
with the denominator ansing from ¢, = ¢, tor the par
ticular onentation of the co ordinate system in Fig 1,
where ¢ is always at 45" with respect Lo the co ordinate
axes Substitution ol the stream function ot expression
(3)into (7a) and differentiation reveals that W, and £ are
related by,

W, = (-1 +08). (7b)

Recall that special cases occur lor Wy = 0 (pure shear
strain), W, = 1 (simple shear strain), and W), = @ (ngid
body rotation)

COMPUTED PARTICLE PATHS

The progressive delormation of a matenal volume s
dictated by the particle movement paths. The stream
function enables mapping of the full streamline pattern
but was designed to culculate the volumetric flow rate
between these streamlines and is not suitable for tracing
the movement of individual particles in time The math
ematical descnptions providing the tramework to track
movement paths of individual particles 1in time are
outlined in Appendix A,

It has long been customary 1n geological literature (0
refer Lo two basic cases ol progressive deformation, pure
shear and simple shear Both of these plane detor
mations imply a particular assumption about the orien-
tation of the principal stress axes with respect to a
reference surface of the deforming volume (see later)
Changing the onentation ol the stress axes can result in
progressive deformation sequences which are inter
mediate between pure and simple shear. A progressive
deformation is fully predictable and characterized by Lhe
principal stress onentation, provided that this orien
tation remains constant with respect (o the reference
surtace [t1s then possible 10 make inferences aboul the
time required to accomplish a particular firute defor
mation pattern

Consider a specific case: a cube of viscous matenal
resting on a solid plane, termed the reference plane in
whalt tollows. This unit volume is subjected 10 a stress
field, and may shp ftreely over the relerence plane
relative to a single pin-axis (Fig. 3) The plane of section
contains the major stress axes and coincides with the
XZ-plane ol a Cartesian frame ol reference. The refer-
ence plane coincides with the XY-surface and the pin
axis is parallel to the Y axis. The bottom of the cube 1s
kept in tight contact with the reterence plane for any
orientation ol the deviatoric stress field. The cube may
be thought ol as part of a body with infinite lateral extent
in the direction of the second principal stress axis, so that
deformation remains plane. Also, the cube remains
incompressible in response Lo instantaneous stresses and
long term  volume changes (accompanying solution
transfer and metamorphic processes in rocks) also are
excluded. Consequently, detormation will be 1sochonc,
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Fig V Sketch section through the deforming umit volume to show
dehmitions of the angle, &, vl the pnnapal deviatone stress, 1, with
espect (o the normal to the relerence plane, the inclination, #, ol the
major axis ol the strain elhpsord, and the principal streich, 8 The
angles ¢ and {, are measured from lines 90 apart 10 account lor the lact
that §; ol the incremental strain ellipsoid 15, by dehnition, always the
largest stretch and thus perpendicular 1o 1; The quantihes incl (6),
poleral (8), xlen, xtms, xstep, zlen (D), and axis! (8;) are used
extensively in the compulter program of Appendix B and are included
here mainly tor the record.

and additionally, 1s assumed to be homogeneous on the
scale of the unit volume considered here The assump
tion of homogeneous deformation implies that body
forces in the unit volume are neghgbly small as com-
pared to the surface forces.

The rale of displacement (x,) of particles v, in XYZ
space can be described by the Eulenan rate of
displacement equation.

x, = L

0t

(8)

The components ol the rate ol displacement tensor L,
for the situation outhined in the definition sketchof Fig. 3
can be oblained as follows Realize that the components
of solid body rotation in the anti symmetnc part ol L,
do not alter distances between Auid particles and thus do
not involve stress. The stress induces strain rates, as
descnibed by the strain rate tensor, which for the con-

figuration of Fig. 3 is (using ¢,, = —¢,,).
e, 0 ¢,
D,=| 0 0 0 (Ya)
e, 0 -éy

The boundary condition of plane strain reduces the
vorticity lensor {0:

0 0 -an
w,=| 0 0o 0 (9b)
@2 0 0
Recall that é,, = ¢, = 3[(ov,/ox) + (dv,/6z)] and

w, = [(dv,/9x) - (dv /0z)] (Appendix A) The stable
reference plane does not allow for rotation of the base of
the block relative to the XYZ trame ol relerence, so that
dv,/dx = (. This implies that, numerically, w,/2 = -¢,,.

Consequently, the rate ol displacement tensor L,, can
be expressed in terms ot the normal and shear com
ponents of the strain rate



1066

(Y¢)

This 15 only valid for the choice ol reterence frame as
defined in Fig 3. Note thal tensor shear strain rate ¢,,
relates (o the engineering shear strain rate y,, by
Zt'u = J”l."

The position of any particle at a particular time f can
be lound by solving the partial differentials of the rate-
of displacement equations (8) using L, as defined in
expression (9¢). For complex flow fields, this integration
can only be solved by numerical iteration (e.g. McKen
zie 1979), but analytic integration is straightforward tor
the simple flow and boundary conditions considered
here. Methods lor analytic solution of the time deriva-
tives of the velocity tield have been explained in detail by
Ramberg (1975a,b), but his equations may be abbrevi
ated considerably (see Appendix A).

Solution ol equations (8) with the particular L, of
expression (Y¢) yields the deformation lensor (using
Appendix A):

exp(e, ) 0 2¢,/é.)sinh(é,1)
F, = 0 [ 0
0 ]

(10
exp ( _‘.'rr’)

which is similar to the matnces comprised in equation
(6) of Giesekus (1962), equation (38) of Ramberg
(1975a) and equation (28) of McKenzie (1979)—the first
and last only after a 45" transformation ol the reference
frame.

The normal and shear components o the strain rale
tensor D, are related directly to 7,, and r,,, the normal
and shear components of the two-dimensional devia-
loric stress tensor T, (see Appendix A, equation AS):

€ = 0,2 (11a)
e, =1,/2n. (11b)

The viscosity n in expressions (11a) and (11b) may be
either Newtoman or an eHective viscosity accounting for
non Newtonian low This follows from the assumption
of homogeneous deformation, which imphes that the
deviatoric stress 1s constant throughout the unit volume.
Since there is no spatial variation in the strain rate, the
dynamic viscosity may not vary during flow. This 18
fulfilled if the rheology of the unit volume 1s Newtoman,
but also for any other intrinsic rheology as each pair of
stress and strain rate values plots as a single point in the
log-log space of a Row diagram (e g see fig. 3 n
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Werermars & Schmeling 1986) Note that | prefer using
.. tor the deviatoric normal stress rather than o,,,
adopuing Fung's (1965) system ol reserving ¢ tor devia
toric stresses and o for the total stresses, the indexes are
sufficient 1o distinguish the normal and shear com
ponents

The normal and shear strain rates can now be related
directly to the onientation & ol the pnncipal deviatorie
stress 7, with respect (o the normal to the reterence
plane (Fig 3), making use of the equations lor the Mohr
circle of stress (cf. Means 1976)

T+ -1 - ‘
Ty = ——— . Yyl Tleas 2t (12a)

Ty — Ty .
r,_.=—'T—s|n 2 (12b)

-

For biaxial isochoric flow ry =
(12a) and (12b) simphfy to-

-, su that expressions

-
il

W =108 2 (13a)
(13b)

Substitution of (13a) and (13b) into (l1a) and (11b)
yields:

~
-
I}

r,sin 2€,

(14a)
(14b)

It follows from expressions (14a) and (14b) (hat the
deformation tensor F, in expression (10) s fully de
scribed if the orientation & and magnitude r; of the
principal deviatoric stress is known (ogether with the
viscosity and the ume ¢ elapsed since the onset ol
deformation

Consequently, the movement path of any particle

(x0.¥0,29) is described by the deformation tensor ex

éy, = (1, cos 28E)/(2n)

e,, = (r;sin 28)/(2n)

pression:

e n)ls] e
with
A =exp(R,cos2b) (l6a)
B = tan 2& [exp (R, cos 2&) - exp (- R,cos 28)|  (l6b)
C=40 (16¢)
D = exp(-R,cos2t) (l6d)

and non-dimensional time R, = (f7,)/(2y) Nole that y,
does not change n planar flows, so that v = y, n all
cases.

Expression (15) can be formulated in terms ol algo

Fig 4 Compuier graphic iepresentation of streamline patierns induced by the pnncipal deviatonc stress, ry (compressive, plane stran), ol
particular onentations (as specified in the caption ol ach image and outlined by the green line) with respect to the reference plane The rheology
15 1s0lropic (amisotropy factor = 1). The direction of flow along the hyperbolic particle movement paths 1s away from the asymplote nearest the
major principal stress axis and (owards the asymplote turthest from the stress axis Flow along, the asymplotes themselves 1s away trom and
lowards the ongin tor the asymptote turthest trom and nearest to the stress axis, respectively Flow fields tor { and &' = Y - £ are mimor images
abou( the Z axis, but look different as the algonthm used (o visualize them picks different, evenly spaced particles along the X axis and Z axis,
loré « 45°and & = 4%° respectively The images were photographed directly trom the monitor and may include shght distortions arising trom the
curvature of the sereen Similar particle paths have been visualized previously (e g Giesekus 1962, Ramberg [97%a,b, Bentley & Leal 1986), but
the systematic relationship with the pnincipal deviatonc stress axis 1s first outhned here
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nthms and run on a PC or Laptop compuler equipped
with graphies (o visuahze the streamline patterns ansing,
i our umil volume 1n response to any stress with a
particular onentation [ Sottware developed by the
author 1s discussed in Appendix B. Figure 4 illustrates
several examples of two dimensional flow palterns,
emphasizing the gradual change in the pattern as the
inchination of the principal stress axis vanes from paral

lehsm (£ = 90") 1o orthogonality (& = 0°) with respect to
the reterence plane The low pattern shows the move-
ment ot particles about any point within the detorming
unit volume The honzontal axis (in blue) 1s parallel 10
the reference plune at the base of the block Note that
the streamhine patterns are fixed for any particular £,
irrespective of the magnitude of 1, and 1, provided that
t +0. The anisotropy tactor 1s unity for all streamline
patterns in Fig 4 as the matenal is isotropic. The effect
of orthotropy has been treated elsewhere (Weijermars
In preparation)

Examples ot some of the flow patterns in Fig. 4 have
been previously visualized in analytical studies (Ram
berg 1975a,b, Ramsay & Huber 1983) and expenmental
studies (Fuller & Leal 1981, Bentley & Leal 1986), or
both (Giesekus [962). However, the systemalic re-
lationship ol these flow patierns with the onentation of
the deviatoric stress axes is outlined here tor the first
time

FLOW ASYMPTOTES

The streamline patterns in Fig. 4 all possess a unique
set of two straight streamlines, except for & = 45" where
they comncide These straight streamlines—traces of the
eigenvecior planes—are asymptotes to the hyperbolas
that form the flow patterns One eigenvector plane is
asymplotic to the exit low, the other is asymplotic Lo the
entrance Row The asymptole to the exit fow coincides
with the X axis for any &£+ 45" The asymplote (o the
entrance flow coincides with the X axis for any £ =+ 45¢

Figure 4 also specihes Lthe kinematic vorticity number
lor each low The acute angle (a) between the X axis
and the other Aow asymplote 1s related to the kinematic
vorticity number by (cl. Bobyarchick 1986).

W, =cosa (17a)

The kinematic vorticily number Wy can also be related
to the orientation £ ol the principal deviatoric stress 1,
This is because W\ can be expressed as a function of ¢,
and ¢,,, 1.e. the normal and shear components ot the
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two dimensional strain rate tensor. The vorticity @, has
a magnitude equal to that of the engineering shear strain
rate -y,, = —2¢,,. Substitution 1n expression (4b) and
using expressions (14a) and (14b) yields:

W, =sin 2k, (17b)

Combining expressions (17a) and (17b) and ehiminating,
W, yields the relationship between a and &

a = cos™! (sin 2§). (18a)

Negative angles are measured clockwise and positive
angles are measured anti clockwise. Expression (18a)
can be simplhified by defining ¢’ = 90° - «, so that

a' =2 or a=9" -2

(18b)

Expression (18b) has been used to determine the
inchination ot the second asymptote with respect to the
normal Lo the reference plane for all low patterns in Fig.
4. Note that the asymptote inchinations in Fig. 4 are
specified as positive angles, 1 €. measured in an anti
clockwise direction with respect to the reference plane
normal or zenith. The inclination of the asymptote to the
hyperbolic flow paths 1s equal o twice the angle of
inclination ol the deviatonc stress

FINITE DEFORMATION PATTERNS

A deformation may be termed progressive il the
observer 1s able to examine a continuous sequence of
configurations through which a body passes, unlike the
general term ‘deformation’ which refers to the ditter
ence in geometry of (wo distinct finite states ol a body
(Finn 1962). The particle paths computed and illus-
trated in Fig. 4 allow reconstruction of the progressive
deformation of matenal volumes.

Again, consider the deformation tensor of expression
(15) with the terms A, B, C and D as specified n
expressions ( 16a)-(16d) The pnincipal axes of the strain
ellipsoid at any ume ¢ can be characterized in terms ol
eigenvalues of the deformation tensor, §; and S5, using
the pnncipal quadratic elongations 4; and 4;. The
latter—themselves eigenvalues of the strain ellipse ex
pression in matrix form (Ramberg 1975a, p 30)—can be
calculated from the deformation tensor components A,
B, C and D, using the following algonthms:

A = 05((K) + V(K?) - 4AD - BC)’|} (19a)
Ay = 0 S[(K) = V[(K®) - 4d(AD - BC)]} (14b)
with K = A* + B* + (7 + D’ For example, a unit sim

Fig 5 Computer graphic representation of progressive deformation ol a unit volume of rock in ductile creep and plane strain due to stress helds
onented asin Fig 4 The images are non-dimensional ‘The increments of hnite strain are 2 Ma apart lor a rock with isotropic viscosity of 1f! Pa s
delormed by a deviatonic stress of 20 MPa This corresponds 10 a strain rate of 107" s The 1ime scale can he adapted (o other situations
applying the scaling rules of expressions (23a) and (23b) The two hyperbolic flowhnes (in red) show the movement of particles in the upper left

and upper nght hand comers of the delorming volume, relative (0 the pin point al the intersection of the stress axs (in green) and the reflerence
plane (in blue) The tull fow patiern around any particle above the relerence plane 1s given in Fig 4 The onentation ol the axis of largest stretch
of the sirain elhipsoid at infinitely large strain s indicated by the inchnation of the asymptote (inred) Positive angfes are measured anti-clock wise

The images were photographed directly from the monitor and are not corrected for the curvature of the screen The character ol the images was
inspired by Ramberg's (197%a) hg 3, but again, the systematic dependence ol the progressive deformation on the stress onenfation 1s hrst

emphasized here
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ple shear which has (4, B, C, D)= (I,1,0,1) gives
A1 =262 Expressions (19a) and (19b) were adopled
from Ramsay & Huber (1983, appendix B, equation
B 19, p. 287) and are also implied in Thompson & Taul
(1879) and Jaeger (1956). The length ol the major and
minor axes ol the strain ellipsoid can be expressed n
terms of the stretches §; and 8,

S| =1+ ¢y = \/A| (Z“U)
8§, = VA, (20b)

and the axial ratio R = V/(4,/4,). Nole that S, and §, can
also be obtained directly from R = §,/S, and the bound-
ary condition of plane 1sochonc strain so that §, - §4 = 1.
Consequently, the ellipticity may be wnilen as
R =($))" = 4, The condition of plane strain imphes
that the intermediate axis of the strain ellipsoid, S,,
remains unchanged so that S, = I.

The angle @ between the major axis of the finite strain
ellipsoid and the X axis can be calculated for any time ¢,
from the expression (c[. Ramsay & Huber [943,
equalion B.14; also implied in Thompson & Tait 1879
and Jaeger 1956):

I+("|=

6 = 0.5arctan [(2AC + 2BD)(A’ + B® - (7 - DY)|.
(21

Recall that the rotation ol the major axes of the strain
ellipsord is not the same as the rotation of particular
matenrial lines

The horizontal and vertical dimensions of our de
formed, initially cubic, unit volume are equal to A and
D, respectively. Any initially vertical marker line within
the cube is, after delormation, inclined at angle 8 with
respect (o the reference plane.

B = arctan (D/B) (22)

The algonthms above allow the computation ot any
parameter relevant to the progressive deformation his-
tory of a unit volume A computer program can be
written for calculaling these parameters and displaying
stages 1n the evolulion of finite strain pertinent (o a
particular detormation sequence (Appendix B).

Figure § visualizes the progressive deformation of a
unit cube for vanous onentations ot the principal stress
axis. The base of the cube is pinned at one corner and
slips freely over the reference plane. The pin-line 1s
perpendicular (o the plane of section of Fig. 5 and 1s
visible as a pin point in the lower left hand corner lor
(" = &£ =45" and in the lower nght-hand corner for
45 = & = 90 The unit cube of this particular example
compnses a rock of viscosity 10%' Pas, deformed by a
deviatonc stress of 20 MPu. This corresponds to a typical
geological strain rate of 107" s™' The stages shown in
Fig 5 are 2 Ma apart. Stages of reciprocal deformation
are included in Fig. 5 to emphasize that the patterns for
similar Wy, occurring at £ and &' = (N - &), look simi
lar, but difter in the sense of reciprocal and progressive
deformation.

Figure 6 illustrates the progressive deformation ol a
cubic block in a plane stress field tor various values ol &,

R. WEIJERMARS

{ ]
| I I 1

1elerence plane

Fig 6t Progressive deformation ol a cubic block viewed perpendicu
lar to the pin fine bisecting the bottom plane Thus the block 15 in (wo
equal parts each slipping withoul fnction uver the relerence plane in
opposite directions Cases gaven by & values of 07, W', 45" and 6 are
lustrated Increments ol hnite strain are 2 Ma apart for a rock ol
isotropic theology delorming at a sirain rate of 107" 5™ ‘The intent 15
1o emphasize the thickening vs thinming ol the layer (of which the cube
1 part) resting un the relerence plane, forcases ol & - 45" and & < 44°,
respeclively Expression (23b) can be used for translation (o other
rheologies and stress helds

with the pin hine bisecting the bottom surface in two
equal, rectangular areas that may ship treely over the
reference plane. Increments of finite strain are similar to
those shown for the same value of £ in Fig 5, but the pin-
line is now positioned so that the macroscopic Aow field
includes all the Aowlines illustrated above the X axis in
Fig 4 for the corresponding £

The relationship between W,, ¢ and o (or
a’' = 90° - a) has been graphed in Fig 7 according to
expression (17b). Note that flow patterns in Fig 4 are the
same for £ and &' = 90" - & except for a rigid body
rotation of 180° about the Z axis However, the direction
of Row is nol the same, so that the mode of progressive
deformation will be difierent. Companson ol the results
in Fig. § reveals that angles & for 1 -orientations larger
and smaller than 45 give the same W,, but involve
different progressive deformations leading tolayer thick
eming and thinning, respectively. Layer thinning and
thickening is also visible in Fig. 6. Figure 7 theretore
emphasizes that the kinematic vorticity numbers for £
and &’ = Y* - ¢ are identical, despite differences in the
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Fig. 7 Relationshup between the kinematic vorticity number W, and

the angle ¢ between the major pnncipal stress axis and the normal to a

teference plane The angles @ and a’ = W° - a between the (wo

asympioles ol the Howline patterns lor a particular £ value are also
graphed

progressive deformation. Consequently, the stress
onentation is a unique measure for the mode of progress
ive deformation—the kinematic vorticity number 1s not
The time increments of Figs. 5 and 6 can be translated
1o other time scales using the tollowing scaling rule
(combining equations [2c and 12f ol Werjermars &
Schmeling 1986):
(23a)

’new = l(”nrwrnld )/( NoldTnew ) l’nld

or

’I‘IEW

(23b)

The time scale 1,y of Figs 5 and 6 can be converted to
new time scales f,,, by substituting into expression (23a)
the following values: kinematic viscosity g =
10! Pas, deviatonic stress Tog = 20MPa, and v, and
Nnew Of lhe new deformation sequence.

Alternatively, the time scales of Figs. 5 and 6 (and 9
and 10, see laler) can be non dimensionalized (R,)
according to the [ollowing expression:

= (‘.'old/‘.'new )rnld

R, = (toia? iaV 21014 (24a)

or
Rl = toldt.'cdd' (24b)

For example, the non dimensional tume for the | Ma-
isochron in Fig 10is R, = 0 315

OSCILLATORY VS MONOTONIC STRAINS

Figures 4 and 5 and the associated theory comprise the
entire spectrum of stress orientations possible in (wo
dimensional, homogeneous, steady-state flows. A pecu
liarity of this spectrum s that streamline patterns charac
teristic of oscillatory strains cannol be generated by the
model of Fig. 3. The relationship between the kinemauc
vorticity number and the stress orientation given in
expression (17b) explains why monotonic and not oscil
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Fig 8 Sketches ol an expenimental set up lor simulating (a) non

osallatory (1e 0= W, = 1) and (b) osallatory (1e |« W, = =)

delormanons A cyhinder of radius 7 1y rolled between a slable

relerence plane and a movable top plate loaded with a mass M ‘The

velocity ol the 1op plate 15 v, The cyhinder n (a) 1s pinned (o the

reference plane, thus limiting the amount of rotation The cyhinder in
(b) may rotate treely between the two planar surfaces

latory strains occur. It appears that W, vanes only
between 0 and | tor any particular onentation of the
stress field; no oscillatory strains occur in this range
(Fig 7).

Oscillatory detormation histones occur if Wy, - 1 and
Appendix A outlines why the deformation tensor 1s
different trom that obtained here 1If complex eigenvalues
are involved in the solution of the integration of the rate
ol displacement equations Phfiner & Ramsay (1982)
correctly pointed out that only flow paths leading to
delormations lying between pure shear and simple shear
are geologically relevant tor lectonic processes on a
regonal scale Ramberg (1975a, p. 34) explained that
oscillatory strains may occur only within compeltent
inclusions enclosed in a sotter matrix The rate ol strain
of the inclusion must be less than that in the matnx to
enhance the vorticity. This condition 1s only met on a
small scale, unless applicable to batholiths separated by
supracrustals The concept may be clanfied using a
mechanical analog, where the strain rate and vorticity
are caused by two separate mechanical components.

Figures 8(a) & (b) show the pnnciple schematically. A
pair of initially circular cyhinders, both consisting of the
same viscous matenal and delorming by plane strain,
rests on a stable reference plane, with the cylinder-axis
perpendicular to the plane ot low (and view). The top of
both cylinders is in contact with a plate of neghgible
weight. Vorticity may be given (o either cylinder by
pulling the top plate honzontally with velocity v, per
pendicular to the cylinder axis. A pnncipal strain rate
may be added by loading the top plates with a mass M as
indicated in Fig 8 Body torces inside the cylinders are
negligible in comparison to the surtace torces

The systems of Figs. 8(a) & (b) difier in only one
respect—the boundary condition The magnitude of the
vorticity in Fig 8(a) 1s hmited by fixing the base of the
cylinder to the reference plane The top of the cylinder
may roll in response to a lorce pulling the top plate at
rate v,, without allowing any shp al their contact. Pro-
gressive simple shear will occur 1 the surface load 1s zero
(M =0)and v, -0.Pure shear low occursit v, = () and
M .- 0. Consequently, the configuration of Fig. 8(a)
allows only tor the occurrence of non oscillatory defor
mation histones.
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Table 1 Companson ol inclination & of the straim elhipsoid lor various
stretches Sy in simple shear (4 — 44") using equations (16a)-(16d) and
(26a)-(26d) Equations (26a)-(26d) are a good approximation up (o
stietches of about 3 Time steps in millions ol years are for siram rate

=Mt
Time # (equahions loa-l6d) # (equations 26a-26d)
(Ma) S (*) ("
| | ¥ Yo 27 16 44
2 | Kl 28 84 29 65
3 232 21 28 24 95
4 2 N7 19 19 207
5 1,44 16 19 19 49
[ 403 1192 17 82
7 46} 1218 16 4%
L] 523 10 Rl 14 §7
9 5 84 970 14 76
10 6 46 K79 14 10

In contrast, the magnitude ol the vorticity in Fig 8(b)
18 unhmited because the cylinder can roll freely, but
without slip, between the reference plane and the top
plate. Perfect rigid-body rotation will occur if the surlace
load 1s zero (M = 0) and v, “- 0. Again, pure shear flow
occurs it v, =0 and M -0, but W, > 1 for any other
combination ol M and v,. This 1s because v, cannot
effectively transfer shear stresses to the surtace of the
cyhinder due Lo the boundary condition of tree rotation.
Consequently, the expenmental configuration of Fig.
8(b) allows the modelling ot oscillatory deformations

An experiment of oscillatory detormation may be
provisionally simulated by moulding a cylinder out of 4
high wviscosity material such as PDMS (viscosily
5 x 10* Pas, see Weijermars 1986). This viscous cylin
der is then loaded by a copy of this journal and subjected
to vorticity by rolling the cylinder between your desk
and the journal. The distance between the journal and
the table will periodically decrease and increase if you
pull the journal at a slow, conslant speed parallel to the
(able. The cylinder uself will deform n an oscillatory
fashion by approximately plane strain if the cylinder axis
1s long relative 10 its radius.

STRESS FIELDS

Figure 5 suggests that, for any particular onentation
ot the principal deviatoric stress, the magnitude of the
finite strain evolves coevally with a particular amount of
finite rotation n a fashion dictated by the particle
movement paths The relationship between the magni-
(ude of the stretch and the progressive rotation of the
principal axis of finite strain has previously been estab-
hshed for the specal case of simple shear, 1.e & = 45"
(Ramsay 1967, p 85 H) and other cases are implied 1n
Ramsay & Huber (1983, session 12). It is useful (o
investigate the relationship between the principal
stretch and rotation for any orientation of the principal
stress.

The unique relationship between the principal stretch
8, strain ellipsoid inclination 6 and inclination & of the
principal dewialoric stress, can be demonstrated by
straightforward mathematics. Equation (21) expressed

R. WEIIERMARS

#in terms of the delormation matrix components 4, B,
Caund D. These compunents, as specified in expressions
(16a)-(l6d), can be rewnitteninterms of §; and &, Thisis
because the non dimensional time R, used in expressions
(16a)-(led) s, in tact, also a measure of the finite strain’

R, = (rr))(2n) = te; =1In Y, (25)

Substitution of expression (25) into expressions (16a)-
(lod) yields:

A= s (26a)
B = tan 2E(S\" - STty (26b)
C=10 (26¢)
D=8t (26d)

It 1s now obvious that equation (21) together with
expressions (26a)-(26d) descnbe the unique relation
ship between &, S, and #. Nole that expression (26b) is
undefined for & = 45", bul this can be circumvented by
taking any ¢ very close to this particular angle
Equations (26a)-(26d) are only stnctly valid tor pure
shear (i.e. & = (1 or & = 9)"), because 1n other cases the
approximation of R, by In §; in equation (25) becomes
inaccurale due to the mismatch between the incremental
and finite strain ellipsotds 1n non-coaxial detormations
The largest mismatch occurs for simple shear (§ — 45"),
but Table | shows that equations (26a)-(26d) still are a
good approximation ol the exact solutions of equations
(16a)-(l16d) for stretches smaller than 3.

Figure Y graphs the relationship between the inchna
tion angle, A, of the strain ellipsoid major axis (with
respect to the reterence plane) and the magnitude ol the
major stretch §, for a family of & (using equations
lba-16d) Nole that the principal axes of the ellipsoids
for stress and incremental strain (or strain rate) coincide
so that @ = & at the onset of the deformation Recall that
# and & have been defined 90° apart (Fig 3) to accounl
for the lact that §, of the instantaneous or incremental
strain ellipsoid 1s always perpendicular (o 7, The sub
sequent evolution ol finite strain and rotation ot the
strain ¢llipse is outhned by the subhornizontal curves in
Fig. 9.

The plot of Fig. 915 non dimensional, except for the
isochrony These are scaled tor the particular case ol
rock with an sotropic viscosity of 10! Pas, delorming
by a deviatonic stress of 20 MPa at a strain rate of 10~
s~ !. The 1isochrons are included in Fig 9 to demonstrate
that pure shear 1s much more ettective than simple shear
tor achieving large strains for a given deviatoric stress.
This applies only to isotropic rheologies; the reverse
holds for orthotropic viscosities where the plane of
weakness lies in the shear direction (Weijermars 1n
preparation). The diference between the finite strains
achieved in pure shear and simple shear increases as the
deformation progresses (Fig 9). The 1sochrons mn Fig 9
can be translated (o other time scales using the scaling
rule ol expression (23)

Figure 10 shows an alternative graph plotung the
change in orthogonal thickness ol a deforming layer
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Fig 9 Nomogram showing the relationship between the angle, #, ot the major axis of the hnite stram ellipsoid with respect

toarelerence plune and the magnitude ol the stretch, 5, and ellipticity, R, caused by prinaipal deviatorie stress, 1, inclined

at TOr, 200307, 407, 445", 508 608, 700, 80P and 9" The isochrons indicated reler to a tock ol sotropic viscosity delorming,

atastram rate of 1051 Nop dimensionalizanon by eapression (24b) yields dimensionless imes R, = (0 315 for | Ma,

R, = 06301t0r 2 Ma, R, = 0945 for YMa and R, = 0 35« tor + Ma See also the dehmoon sketeh of Fig 3 and expressions
(20) and (21)

versus the rotation ol a marker line imuially perpendicu
lar to the layer, for a vaniety ot orientations, &, ot the
principal stress axis. Layer thickening occurs for & - 45"
and thinning for £+ 45", whilst thickness remains
unchanged in simple shear (£ = 45") Layer thinning 1s
lustest for pure shear at £ = 0", and fastest thickening,
oceurs by pure shear at & = 90" Nolte that the asymmet
ne ‘bulge’ in the sochron pattern indicates that the
rotation ol the initial normal s tastest lor simple shear
(& = 45") at the onset of delormaton, but occurs {asler
tor smaller values of & 1l the delormation progresses

DETERMINATION OF PALAEOSTRESS

Ductille detormation patterns caused by solid state
creep in rocks are hmited Lo very low Reynolds number
flows so that inertia effects may be neglecled (e.g.
Weijermars & Schmeling 1986) This means that delor
mation ceases instantaneously as soon as the dnving
force stops. 1tis therefore potentially possible to recover
the orientation ot palaeostress axes responsible for natu
ral deformation patterns from field measurements of
their finite stramn and rotation components, alter con
Arming that there has been Aow at a constant stress

orientation (expressions 21 and 26a-26d) Methods 1o
recover the strmin from natural flow markers are avail
able and require only knowledge ol the nital geom
etries (of fossils, pairs ol lines, imbricated pebbles, ete
¢t Ramsay & Huber 1983, Lisle 1988). However the
component of finite rotation can only be quantified if the
inttial ortentation ol such flow markers 18 known

At this pomnt il seems appropnale to quole what has
been lermed a general theorem (Hobbs et al. 1976,
p 31): “Any homogeneous constant volume defor
mation can be expressed as a pure shear together with a
rigid body rotation and a ngid body translation”. This
theorem s commonly used to discourage geologists trom
attempting to determine whether a particular detor
mation pattern in the field has been tormed by pure or
simple shear “The only ditferences between such a pure
shear and a simple shear are a ngid body rotation and a
ngid body translation” (Hobbs er al 1976, p 32).

Perhaps the ditficulty of distinguishing between ro
tational and non rotational deformation histories has
been over emphasized 1n the past. It has overlooked
situations where ductile rock has flowed adjacent 1o
relatively rigid walls. A unit volume of rock with one
face adjacent to a stable ngid boundary will be unable to
rotate that contact if strain compatibility rules are res-
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Fig 10 Nomogram showing the relanionship between (he change in layer thickness (expressed as stretch D) and the

rotation (A) ot a ine inmally orthogonal to the relerence plane for vanous onentations, &, ol the pnncipal deviatonc stress

The angle 81s %" at ume 0, when delormation begins  The vertical ine tor & = 45° shows (hat there 15 no change in layer

thickness lor simple shear ‘The field 1o the left shows how layer thinning occurs if £ 1s larger than 45° Note that, in pure

shear, layer thinmng or thickening does nol involve a change in 8, and therefore pure shear plots along the top line of the
diagtam See also the defimtion sketch of Fig 3 and expression (22)

pected. There are many situations 1n nature where this
boundary condition may have been maintained during
the deformation. For example, ductile shear zones be

low fold nappes, orogenic belts adjacent to cratons and
segments of lithosphenc extension may all comprise
ductilely deformed structures, at particular depths,
deforming between relatively rigid walls. The stretch of
the bulk strain ellipsoird and its inchnation with respect
to those walls provides a potential measure of rotation
which can be plotted in Fig. 9 10 determine &. Alterna-
tively, the rotation and change in length of a marker line
initially orthogonal to the ngid walls of the deformed
2one can be used (o determine & from the plot of Fig. 10.

Example

The graphof Fig. Y can be used (o plot pairs of (R,8) or
(§/,6) measured in the field. If the deformation markers
used were truly passive and have a good strain memory,
these pairs cluster on the plot ol Fig. Y and thus provide
an estimate tor £. In order to avoid discussions on the
rehabulity of the strain memory of delormation patterns
in natural rocks, | resort 1o a laboratory expenment.
Figure 11 shows sketches of John Ramsay and Martin
Huber on (he side ot a Plasticene block of high viscosity
deformed by a siress of consistent, bul unknown onien-
tation. Plasticene has a perfect strain memory and is

unable to recover. The base of the block was lubricated
with a low wiscosily oil allowing free slip over a stable
reference plane relative (o an arbitrary pinline. The
block was further confined between (wo plexiglass walls
so that detormation remained planar. The images of
both Ramsay and Huber were nicely round in undis-

Fig 11 Passive sirain markers (images of John Ramsay and Martin
Huber) on the side of a Plasticene block of high viscosily deformed by a
plane stress field of unknown onentation The base of the block
remained stable throughout the delormation The finite stretch
$) = 1.14 and the inclination of the greatest axis of the strain ellipsoid
with respect 10 the base of the deformed block 1s 8 = %° These data
are sufficient to wnfer from the nomogram of Fig 9 that the major axis
of stress causing the deformation was onented at 40° to the normal to
the base of the block The same inclinauon of the stress axs can be
determined, using Fig 10, from the tractional change n orthogonal
thickness ot 0.96 and the rotation of the edge ol the block, which was
mtially at 90° to the reference plane, and 1s now af 75°



The role of stress in ductile detormation

torted mode , and show no area change in the detormed
slale

This allows determination to be made ot the hnite
strain and inchination of the strain ellipsoid axes with
respect to the base ot the delormed block The ellipticity
ot both luces 18 R = 1V (corresponding to a stretch
Sy =VI13=114) and their inclination angle 15 36"
This finds a § value of 40" in Fig Y The alternative
method employs the tracuonal change in height ot the
block of (.96 and the rotanon of the vertical edge ol the
block from 90" 10 75" Plotting these data in Fig. 10 also
yields a & value of 40° This means that the Plasticene
block of Fig 11 must have been detormed by a stress
field with its major principal axis at 40° 1o the normal of
the reference plane i e (he base ol the Plasticene block

DISCUSSION

The theory developed here concerns delormation
patterns tormed (1) in plane strain; (2) al steady state,
(3) without volume change, and (4) adjacent to a ngyd
boundary The feasibility ol these assumptions will be
discussed below.,

(1) Intwo dimensional Hows, all displacement occurs
tn the plane of flow, and there are no velocily com
ponents perpendicular to this plane. This condition s
likely Lo apply to fold belts, shear zones, nappe com
plexes and diapine ndges Three dimensional Aow
fields, involving significant deviation trom plane strain,
are responsible for the emplacement of granite batho
hths, mantled gneiss domes and salt stocks Progressive
deformation in three dimensional flows has been ana
lysed by Ramberg (1975h)

(2) Steady state s assumed, but the magnitude of the
stress and the consequent flow rate need not remamn
constant Steady state 15 assumed here in the sense that
the deviatoric stress remains at a constant angle with
respect Lo the reference plane. In geological flows for
which condition (1) of plane strain apphes, the major
and minor axes of deviatone stress will e in the plane ot
straining  Whether the stress axes rotate within the
plane of deformation depends upon the nature of the
forces that drive the deformation. Most geological fows
are 1n some way or other due to lithosphenc plate
drniving mechanisms. Reorientation of the regional stress
axes on the ume scale of tectonic episodes, say 100 Ma, 18
less likely to occur 1n view of the slow rate at which
convective lorces reorganize (e g see references in
Werjermars 1988a) There remains the possibility that
the reference plane will rotate, even in stable stress
ficlds Nonetheless, there are many situations in nature
where rock 1s deforming in a ductile lashion adjacent to
relatively nigid walls,

(3) The deforming block is assumed (o remain incom
pressible in response (o instantaneous stresses This
usually holds for rocks deforming at crustal depths
where ductile creep may occur, as any pore space will be
closed due to the high conhning pressures prevaihing at
such depths (say 7km) The long-term volume
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changes which may be caused by solution transier and
metamorphic processes in some rocks also are excluded
Note that the present theory will sull hold 1f the volume
change 18 equal 1n all directions. This may be so 1n
metamorphic volume change, butis certamly unhikelyin
solution transter The error introduced by applying the
present theory to rocks atlected by such volume changes
1s ditticult (o predict.

The estimation of palacostress axes from strain
measurements 1n natural rocks also 1s sensitive to the
strain memory ol the particular rock  Strain memories
may be erased by static recrystallization or annealing
This 1s most hikely in rocks which resided for a long time
at deep crustal levels after deformation Annealing is
least hikely to occur in rack brought relatively quickly to
our vision by isostatic recovery and conlinuous erosion
of the surface The cnucal ime scale for such annealing
to occur will vary with rock type and has not yet been
studied in sutficient detail to allow quantitative esti
maltes

(4) The boundary condition assumed n the present
analysis is that the detorming volume may shp freely
over the stable wall rock relative to a fixed point (the
boundary 1s a tault). In nature, the degree ot ship at rock
intertaces 15 controlled by a range of physical para
meters These include confining pressure, water press
ure, tracture density and ambient temperature Byer
lee's law in crustal strength profiles suggests that sohd
state ship by tnictional ghde will generally not occur al
depths where rock may deform in a ductile fashion (e g
Goetze & Evans 1979) The tree ship condition therefore
will be most nearly fulfilled in geological settings where
the rock volume deforming in ductile fow 1s separated
trom relatively rigid wall rock by a thin zone ol low
viscosity rock. Bird (1984) has provided experimental
suppuort tor the idea that major tault zones, weathered by
hydrothermal circulation, may have extremely low tric
tnonal resistance  In such cases the intertace may behave
as a stretching fault (Means 1989, 1990) It shp s
constrained, strain compatibility problems will limit the
mode ol detormation 10 simple shear with various
amounts of volume change as discussed in detail by
Ramsay & Graham (1970) (¢f Ramsay & Huber 1983,
p 47, 1987)

CONCLUSIONS

Palaeostress magnitude may be recovered from gramn
size studies ot quartz tabnes (cf. Ethendge & Wilkie
1981) A complementary method lor special conditions,
first outhined here, now also allows potential recovery ol
the orientation ot the principal axes ol palacostress
Knowledge ot the flow field provides a sound basis lor
discussing the significance of the kinematic vorticity
number, vanous modes of progressive deformation and
how these are controlled by the stress onentation

The deformation tensor, obtained by solving differen
tial equations connected with Lhe rate of displacement
or velocity gradient tensor, 18 expressed in time
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dependent terms comprising only the normal and shear
components of the strain rate tensor (expression 10)
Mohr's equations of stress can be used to ink the strain
rales lo the major principal stress This denvation yields
a lime-dependent deformation tensor whichis expressed
in terms ol the dynamic viscosity and major deviatoric
stress (magnitude and onentation with respect (0 a
reference plane), (expressions 15 and 16a-16d)

The deformation tensor can be non dimensionalized
by rewriting its components in terms only of the onen
tation, &, of the major axis ot deviatonc stress, the
stretch, S|, and rotation component, 8, of deformation
(expression 26a-26d). Estimales of the rotation and
stretch of finite strain ellipsoids in nature are sufficient (o
identify the onientation ot the axes of palacostress froma
nomogram first introduced here (Fig. 9) Allernatively,
the direction of palaeosiress axes can be determined
from the rolation and change in length of a marker line
initially normal to the reference plane (Fig. 10)

Finally, the theory developed here should be applied
with care. Although fields of inhomogeneous defor
mation may be partitoned into smaller domains of
approximately homogeneous deformation (Cobbold
1977, 1979, 1980, Cobbold & Percevault 1983, Cutler &
Cobbold 1985), such domains will continuously be reor
ientated with respect to the principal stress directions. In
such cases, recovery of the palacostress trajectories
could still be possible by first reconstructing the flow
lines leading to the particular pattern of inhomogeneous
deformation concerned
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APPENDIX A

MATHEMATICAL DESCRIPTION OF
DEFORMATION

The changing position ol any matenal body in Alow space can he
expressed as a relative displacement ol material points. If an Eulenan
descnption is adopted, the Cartesian position (1,y,2) of any poinl 1n
displaced state had co-ordinates (x,,vy,4)) belore displacement ‘The
tate of displacement (1,) of particles v, in Eulenan space (XY Z) can be
descnibed by the rate of dlspl.m-menl equation

'|= L‘lr’/ (Al)

The rate-ot displacement or velocity gradient tensor L, (=dw/ix)can
be decomposed nto a symmetne (stretching, strain rale, rale of
deformation or velocily slrain) tensor D, and an anhisymmetnc (vort:
Cily, Spin o1 rotafion tale) tensor W, (Malvern 1969, p 147)

(A2)

The stretching tensor mpheily descnbes the accumulation rate ol
incremenltal strain or strain rate ‘The vorticity tensor accounts for the
1otation rate ol the ellipsowd’s pnncipal axes

In the case ol homogeneous delormanion, the stretching and voru
cuy tensors will comprise only linear terms

L, =D, + W,

ll o oy
= a av, o ‘
D" B ‘ ,n * ‘#] J’v|/’ ¢ 1) |/.? (A‘)
7'\|/1 rll e
w2 —wyld
W, = ()| 22y , - A4
- - d_l' d\ -unl2 0 un /) | (Ad)
wyld  —w 2 ()

with varticity vedlor components w,

The particles started moving due (0 o deviatone stress causing creep
at a rate which is controlled solely by the internal Inction or dynamic
viscosity 7 ol the matenal volume.

T, =MD, (AY)

with deviatorie stress tensor T, and hydrostatic stress (ensor F, =
-P b, = ~1%0,,0, taking &, = | for 1 =y and & =010 #y T'he
boundary condition ol plane slmm lequnes that 0, = P which implies
a, = (112) e, + 0}), 50 that

=0 -0, = (12X0, - ay)

=10 (A6)

=030y = (2005 - o))

This assumes that the delormation 1s incompressible, 1 e there 15 no
volume change so that r; = -1, The diHerenve in sign between r, and
Ty 15 accounted lor by the opposite senses ol the devialone stress
arrows in Fig 3

The posiion of any particle at a particular ime r can be found by
integrating the set ol differennal equations (A1) This vields the
deformation tensor F, which 1s equal 10 the sum ol the Kronecker's
malnx o, and the displacement gradient (ensor (du/dy,), also (ermed
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the Jacobian matnix J, or the relative displacement matnix (¢ Malvern
969, p 12d), F, =), + 6, The solution ol the miegration may be
expressed n terms ol u relabonship between the rate ol displacement
tensor L, and the delormation tensor - Assume L, and F,, are piven
hy the lollowing matnees

a O b a b
L=l o ol= (A7)
¢ 0 d ¢ d

4 0 R 4 B
o=l 00 0= (AR)
LC 0D D

The components 4~D ol the delormation matnx may be recovered
trom components a-d ol the displacement rate matnax, butin a lashion
much simpler than given by Ramberg (1975%,b) According 1o Ram
berg (1975h, equation 4 1)

= |(ky = aMky ~ k)| expthn

= |tk = aMth, - k) exp (ko) (A9)

B = [(=blth, - k) lexp (ki) - exp (k)| (A10)

= (k) - a)tk, - aM(bk, - bk |exp (k1) - exp (k)]
(Al

= |(ky — al(k, - ky)lexp (hpt) = |(h,
= Mk, - k)| exp (ki) (AlD)

The dummy constants & and &, are (Rumberg 1975b, equation W)
= (UD)a + d) + V(g - d) + dbe]]

Kp= (UD)a + d) - V(e - ) + dbe]).

(A1)
(Al4)

This solution ol F, |sun|y valid if the square root contained in k| and &,
s real, 1e [(a - d) +dbe| =0, which corresponds 10 cases ol non
osmllalury delormation 1 [(a - d)’ + dbhe] « 0, this negative square
root gves rise to complex eigenvalues, and aliermanve solutions vahid
lor closed particle movement paths are given by Ramberg (1975h)
However, 1t lollows [rom expression (Y¢) that ¢ = 01n any plane, non
oscillatory deformation (but only lor the relerence trame used here),
50 that equations (A13) and (Al4) yield k; = a and &, = d Subsu
tution ol these values in equations (A9)-(A12) pives the simphhed
solution for the components of the detformation matnx

A = exp (an) (AIY)
B = |hiu - d)||exp (an) - exp (dD)] (A1)
=0 (AIT)
D = exp(dt) (A1)
It s worth recalling that in plane delormation d = -u, and exp

(ar) - exp(-at) = ! sinh(ar) The sticamline patterns lor Wis lying
between 0 and | may be synthesized by altemating superposed
inctements ol streamlines lor pure and simple shear Row (see Ram
berg 19754, g 2)

Analogous (0 the rate ol displacement tensor, the Jacobian dis
placement matnx, J,,, can be separated—but only for inhnitesimal
deformations—into the sum of a symmetric matnx (E,) and skew
symme(nc matnx (€2,) (Malvern 1969, p 124)

=E, +4, (A19)
The symmelne matnx describes the stran component of the de
tormation and s therefore called the strain matny (Malvern 1969,
p 129)
riv2
rafl

E, = (1) (A20)

Yial2
du du
il IS _Jl )"I/.' e
I, at

ey

The rotation component of any deformation can be expressed by the
rotation matnx (Malvern 1969, p 111)
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0 wyll —awl!
di, on
O, = ([ =~ == w2 0 o2 | (A2
LA
w2~ 2 0

with puncipal rotations w, The above decompaosition of the displace
ment matng cannot be apphed (o hnite strains, as aon linear terms
need (0 be taken into account tor large deformations  However,
Phllner & Ramsay (1982) have shown how hnite stramns may be
determined by stepwise superposition of small increments of strain and
rotation The hnite strains displayed in Figs % and & were constructed
from the particle movement paths after mtegration of the rate ol
displacement equations, which accounts lor the non hineanty of large
detormations 101s worth noting that Ramsay & Huber (198 4) some
times used the term stram matnx lor whatis, inellect, the delormation
matrix F,, since ther matnx includes the rotation component ol
detormation

APPENDIX B

SOFT SUPPORT FOR HARD ROCK DEFORMATION

A computer program has been wnlien to calculate and display the
progressive delormation of a umit volume of rock in ductile creep The
unit volume 18 homogencously detormed, in plane 1sochornie strain All
parameters relevant to the progressive deformation history are quants
fied by the programme and may be pnnted il so required The
delormation stages are visuahized by imtially square and circular strain
markers (¢ g Fip %) The movement paths of particular particles also
can be displaved (¢ g Fig 4) The rock may be either sotropic or
orthotropie

The graphical display ol the strain markers has been programmed
making ethcient use ol expressions (15)-(22) For example, the image
ol the strain ellipse 15 obtained according (o the lollowing procedure
The axial lengths ol the major and minor axes of (he ellipse, expressed
as stretches §, and §y, respectively, are given by equations (19a) and
(19b), and (20a) and (20b) The inchination & ot the major axis with
respect (o the relerence plane 18 given by expression (21) The co
ordinates ol the strain elhipse (v,2) can first be obtained lor an
elhipse centred aboul the origin with 1ty axes parallel (0 the reference
Irame

r =N co8 ¢ (BI1)

D=8 8N (B2)

with dummy index ¢ = (LWW° The co ordinates of the ellipse are
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subsequently rotated in the relerence plane so that the etipse mchnes
atanple A with respect (o the X ax

Vo= viont - cant (B

= oesnd F o reon (B4)

The hnal co ordinates of the elhipse lor ¢ach delormanon stage are
obtained by translating the co ordinates so that the cllipse remains
centred in the delorming block

The 1images of reciprocal stram are obtained, not by direct caleu
lation, but by reabizing that reciprocal siramn caused by a stress onented
at 4, s similar (o progressive strain due 10 a stress ornented al
4" = (90" -~ {) The appropriate onentations ol the reaprocal delor
mation slages are oblaied by laking the mirtor image aboul the 7
axiy

All images are scaled automatically so that they remamn within the
held of view of the sereen Thisis achieved by scaling all co ordinatesin
proportion to the maximum hnite strain possible within the particulur
time scale, and under the siress/viscosity conditions specihied by the
user Recall that values for rocks detorming in the ithosphere typcally
lall 1n the lollowing orders of magnitude 10-10 MPa lor deviatone
stress, 5-10 Ma for tectonic episodes and 107" = 10 Pa s lor eltechive
viscostly of crustal rocks The degree of orthotropy may be expressed
by the amsotropy lactor, which ranges from | tor isotropic 1o = for
strongly orthotropic rocks (Wenermars in preparation)

The sobware was developed on a 2 Ykg Toshiba THKN Laptop
expanded with 768 kbyles battery buHered hard RAM  The hnal
images ol progressive deformation were displayed in screen mode 9
(6 % 350 pixels), using an IBM PS2 computer Colours specihed in
the algonthms for the line drawings are blue (No 1), grey (No 8),
red (No d) and preen (No ), set against a black background
(No 0)

The photographs of Figs 4 and 5 are (aken from the 16 inch screen
ol an EIZ0Q 90705 monnter assembled with MD BI10O graphic card
using an Olympus OM 1) The camera was mounted with 50 mm
macro zoom lens (1 3 5), and a (npod and remote control were used
to tngger stable automalie exposure while compensating, for the dark
background by setting the hlmspeed at higher values The details in the
images of Figs 4 and 5 required use of Kodak EKTAR 25 hlm tor
superb resolution, setting hlmspeed at 10 ASA Pnnts were made
with an automatic developer setting hght itensity at Auxes S (Fig 5)
and 6 (Fig d)

The solware, taking up only [6 kbytes of disk space and wntien in
GWBASIC (81 kbyles), can be run on any I1BM compatible PC or
Laptop supported by DOS Most of the graphies can be displayed
suthaently clearly tf the hardware includes a CGA card Optimum use
of the graphical options can be made 1l the sysiem s assembled with an
EGA, VGA or Hercules graphies card 1o support colour display
Inquinies about the purchase of copies of the sotiware together with
detailed documentation may be obtained [rom the author



